Metamath Proof Explorer


Theorem phlpropd

Description: If two structures have the same components (properties), one is a pre-Hilbert space iff the other one is. (Contributed by Mario Carneiro, 8-Oct-2015)

Ref Expression
Hypotheses phlpropd.1 φB=BaseK
phlpropd.2 φB=BaseL
phlpropd.3 φxByBx+Ky=x+Ly
phlpropd.4 φF=ScalarK
phlpropd.5 φF=ScalarL
phlpropd.6 P=BaseF
phlpropd.7 φxPyBxKy=xLy
phlpropd.8 φxByBx𝑖Ky=x𝑖Ly
Assertion phlpropd φKPreHilLPreHil

Proof

Step Hyp Ref Expression
1 phlpropd.1 φB=BaseK
2 phlpropd.2 φB=BaseL
3 phlpropd.3 φxByBx+Ky=x+Ly
4 phlpropd.4 φF=ScalarK
5 phlpropd.5 φF=ScalarL
6 phlpropd.6 P=BaseF
7 phlpropd.7 φxPyBxKy=xLy
8 phlpropd.8 φxByBx𝑖Ky=x𝑖Ly
9 1 2 3 4 5 6 7 lvecpropd φKLVecLLVec
10 4 5 eqtr3d φScalarK=ScalarL
11 10 eleq1d φScalarK*-RingScalarL*-Ring
12 8 oveqrspc2v φbBaBb𝑖Ka=b𝑖La
13 12 anass1rs φaBbBb𝑖Ka=b𝑖La
14 13 mpteq2dva φaBbBb𝑖Ka=bBb𝑖La
15 1 adantr φaBB=BaseK
16 15 mpteq1d φaBbBb𝑖Ka=bBaseKb𝑖Ka
17 2 adantr φaBB=BaseL
18 17 mpteq1d φaBbBb𝑖La=bBaseLb𝑖La
19 14 16 18 3eqtr3d φaBbBaseKb𝑖Ka=bBaseLb𝑖La
20 rlmbas BaseF=BaseringLModF
21 6 20 eqtri P=BaseringLModF
22 21 a1i φP=BaseringLModF
23 fvex ScalarKV
24 4 23 eqeltrdi φFV
25 rlmsca FVF=ScalarringLModF
26 24 25 syl φF=ScalarringLModF
27 eqidd φxPyPx+ringLModFy=x+ringLModFy
28 eqidd φxPyPxringLModFy=xringLModFy
29 1 22 2 22 4 26 5 26 6 6 3 27 7 28 lmhmpropd φKLMHomringLModF=LLMHomringLModF
30 4 fveq2d φringLModF=ringLModScalarK
31 30 oveq2d φKLMHomringLModF=KLMHomringLModScalarK
32 5 fveq2d φringLModF=ringLModScalarL
33 32 oveq2d φLLMHomringLModF=LLMHomringLModScalarL
34 29 31 33 3eqtr3d φKLMHomringLModScalarK=LLMHomringLModScalarL
35 34 adantr φaBKLMHomringLModScalarK=LLMHomringLModScalarL
36 19 35 eleq12d φaBbBaseKb𝑖KaKLMHomringLModScalarKbBaseLb𝑖LaLLMHomringLModScalarL
37 8 oveqrspc2v φaBaBa𝑖Ka=a𝑖La
38 37 anabsan2 φaBa𝑖Ka=a𝑖La
39 10 fveq2d φ0ScalarK=0ScalarL
40 39 adantr φaB0ScalarK=0ScalarL
41 38 40 eqeq12d φaBa𝑖Ka=0ScalarKa𝑖La=0ScalarL
42 1 2 3 grpidpropd φ0K=0L
43 42 adantr φaB0K=0L
44 43 eqeq2d φaBa=0Ka=0L
45 41 44 imbi12d φaBa𝑖Ka=0ScalarKa=0Ka𝑖La=0ScalarLa=0L
46 10 fveq2d φ*ScalarK=*ScalarL
47 46 adantr φaBbB*ScalarK=*ScalarL
48 8 oveqrspc2v φaBbBa𝑖Kb=a𝑖Lb
49 47 48 fveq12d φaBbBa𝑖Kb*ScalarK=a𝑖Lb*ScalarL
50 49 anassrs φaBbBa𝑖Kb*ScalarK=a𝑖Lb*ScalarL
51 50 13 eqeq12d φaBbBa𝑖Kb*ScalarK=b𝑖Kaa𝑖Lb*ScalarL=b𝑖La
52 51 ralbidva φaBbBa𝑖Kb*ScalarK=b𝑖KabBa𝑖Lb*ScalarL=b𝑖La
53 15 raleqdv φaBbBa𝑖Kb*ScalarK=b𝑖KabBaseKa𝑖Kb*ScalarK=b𝑖Ka
54 17 raleqdv φaBbBa𝑖Lb*ScalarL=b𝑖LabBaseLa𝑖Lb*ScalarL=b𝑖La
55 52 53 54 3bitr3d φaBbBaseKa𝑖Kb*ScalarK=b𝑖KabBaseLa𝑖Lb*ScalarL=b𝑖La
56 36 45 55 3anbi123d φaBbBaseKb𝑖KaKLMHomringLModScalarKa𝑖Ka=0ScalarKa=0KbBaseKa𝑖Kb*ScalarK=b𝑖KabBaseLb𝑖LaLLMHomringLModScalarLa𝑖La=0ScalarLa=0LbBaseLa𝑖Lb*ScalarL=b𝑖La
57 56 ralbidva φaBbBaseKb𝑖KaKLMHomringLModScalarKa𝑖Ka=0ScalarKa=0KbBaseKa𝑖Kb*ScalarK=b𝑖KaaBbBaseLb𝑖LaLLMHomringLModScalarLa𝑖La=0ScalarLa=0LbBaseLa𝑖Lb*ScalarL=b𝑖La
58 1 raleqdv φaBbBaseKb𝑖KaKLMHomringLModScalarKa𝑖Ka=0ScalarKa=0KbBaseKa𝑖Kb*ScalarK=b𝑖KaaBaseKbBaseKb𝑖KaKLMHomringLModScalarKa𝑖Ka=0ScalarKa=0KbBaseKa𝑖Kb*ScalarK=b𝑖Ka
59 2 raleqdv φaBbBaseLb𝑖LaLLMHomringLModScalarLa𝑖La=0ScalarLa=0LbBaseLa𝑖Lb*ScalarL=b𝑖LaaBaseLbBaseLb𝑖LaLLMHomringLModScalarLa𝑖La=0ScalarLa=0LbBaseLa𝑖Lb*ScalarL=b𝑖La
60 57 58 59 3bitr3d φaBaseKbBaseKb𝑖KaKLMHomringLModScalarKa𝑖Ka=0ScalarKa=0KbBaseKa𝑖Kb*ScalarK=b𝑖KaaBaseLbBaseLb𝑖LaLLMHomringLModScalarLa𝑖La=0ScalarLa=0LbBaseLa𝑖Lb*ScalarL=b𝑖La
61 9 11 60 3anbi123d φKLVecScalarK*-RingaBaseKbBaseKb𝑖KaKLMHomringLModScalarKa𝑖Ka=0ScalarKa=0KbBaseKa𝑖Kb*ScalarK=b𝑖KaLLVecScalarL*-RingaBaseLbBaseLb𝑖LaLLMHomringLModScalarLa𝑖La=0ScalarLa=0LbBaseLa𝑖Lb*ScalarL=b𝑖La
62 eqid BaseK=BaseK
63 eqid ScalarK=ScalarK
64 eqid 𝑖K=𝑖K
65 eqid 0K=0K
66 eqid *ScalarK=*ScalarK
67 eqid 0ScalarK=0ScalarK
68 62 63 64 65 66 67 isphl KPreHilKLVecScalarK*-RingaBaseKbBaseKb𝑖KaKLMHomringLModScalarKa𝑖Ka=0ScalarKa=0KbBaseKa𝑖Kb*ScalarK=b𝑖Ka
69 eqid BaseL=BaseL
70 eqid ScalarL=ScalarL
71 eqid 𝑖L=𝑖L
72 eqid 0L=0L
73 eqid *ScalarL=*ScalarL
74 eqid 0ScalarL=0ScalarL
75 69 70 71 72 73 74 isphl LPreHilLLVecScalarL*-RingaBaseLbBaseLb𝑖LaLLMHomringLModScalarLa𝑖La=0ScalarLa=0LbBaseLa𝑖Lb*ScalarL=b𝑖La
76 61 68 75 3bitr4g φKPreHilLPreHil