Metamath Proof Explorer


Theorem pliguhgr

Description: Any planar incidence geometry G can be regarded as a hypergraph with its points as vertices and its lines as edges. See incistruhgr for a generalization of this case for arbitrary incidence structures (planar incidence geometries are such incidence structures). (Proposed by Gerard Lang, 24-Nov-2021.) (Contributed by AV, 28-Nov-2021)

Ref Expression
Assertion pliguhgr GPligGIGUHGraph

Proof

Step Hyp Ref Expression
1 f1oi IG:G1-1 ontoG
2 f1of IG:G1-1 ontoGIG:GG
3 pwuni G𝒫G
4 n0lplig GPlig¬G
5 4 adantr GPligG𝒫G¬G
6 disjsn G=¬G
7 5 6 sylibr GPligG𝒫GG=
8 reldisj G𝒫GG=G𝒫G
9 8 adantl GPligG𝒫GG=G𝒫G
10 7 9 mpbid GPligG𝒫GG𝒫G
11 3 10 mpan2 GPligG𝒫G
12 fss IG:GGG𝒫GIG:G𝒫G
13 11 12 sylan2 IG:GGGPligIG:G𝒫G
14 13 ex IG:GGGPligIG:G𝒫G
15 1 2 14 mp2b GPligIG:G𝒫G
16 15 ffdmd GPligIG:domIG𝒫G
17 uniexg GPligGV
18 resiexg GPligIGV
19 isuhgrop GVIGVGIGUHGraphIG:domIG𝒫G
20 17 18 19 syl2anc GPligGIGUHGraphIG:domIG𝒫G
21 16 20 mpbird GPligGIGUHGraph