Metamath Proof Explorer


Theorem ply1gsumz

Description: If a polynomial given as a sum of scaled monomials by factors A is the zero polynomial, then all factors A are zero. (Contributed by Thierry Arnoux, 20-Feb-2025)

Ref Expression
Hypotheses ply1gsumz.p P=Poly1R
ply1gsumz.b B=BaseR
ply1gsumz.n φN0
ply1gsumz.r φRRing
ply1gsumz.f F=n0..^NnmulGrpPvar1R
ply1gsumz.1 0˙=0R
ply1gsumz.z Z=0P
ply1gsumz.a φA:0..^NB
ply1gsumz.s φPAPfF=Z
Assertion ply1gsumz φA=0..^N×0˙

Proof

Step Hyp Ref Expression
1 ply1gsumz.p P=Poly1R
2 ply1gsumz.b B=BaseR
3 ply1gsumz.n φN0
4 ply1gsumz.r φRRing
5 ply1gsumz.f F=n0..^NnmulGrpPvar1R
6 ply1gsumz.1 0˙=0R
7 ply1gsumz.z Z=0P
8 ply1gsumz.a φA:0..^NB
9 ply1gsumz.s φPAPfF=Z
10 8 ffnd φAFn0..^N
11 1 ply1ring RRingPRing
12 eqid BaseP=BaseP
13 12 7 ring0cl PRingZBaseP
14 4 11 13 3syl φZBaseP
15 eqid coe1Z=coe1Z
16 15 12 1 2 coe1f ZBasePcoe1Z:0B
17 14 16 syl φcoe1Z:0B
18 17 ffnd φcoe1ZFn0
19 fzo0ssnn0 0..^N0
20 19 a1i φ0..^N0
21 18 20 fnssresd φcoe1Z0..^NFn0..^N
22 simpr φj0..^Nj0..^N
23 22 fvresd φj0..^Ncoe1Z0..^Nj=coe1Zj
24 elfzonn0 j0..^Nj0
25 9 14 eqeltrd φPAPfFBaseP
26 eqid coe1PAPfF=coe1PAPfF
27 1 12 26 15 ply1coe1eq RRingPAPfFBasePZBasePj0coe1PAPfFj=coe1ZjPAPfF=Z
28 27 biimpar RRingPAPfFBasePZBasePPAPfF=Zj0coe1PAPfFj=coe1Zj
29 4 25 14 9 28 syl31anc φj0coe1PAPfFj=coe1Zj
30 29 r19.21bi φj0coe1PAPfFj=coe1Zj
31 24 30 sylan2 φj0..^Ncoe1PAPfFj=coe1Zj
32 10 adantr φj0..^NAFn0..^N
33 nfv nφ
34 ovexd φn0..^NnmulGrpPvar1RV
35 33 34 5 fnmptd φFFn0..^N
36 35 adantr φj0..^NFFn0..^N
37 ovexd φj0..^N0..^NV
38 inidm 0..^N0..^N=0..^N
39 eqidd φj0..^Ni0..^NAi=Ai
40 oveq1 n=inmulGrpPvar1R=imulGrpPvar1R
41 simpr φj0..^Ni0..^Ni0..^N
42 ovexd φj0..^Ni0..^NimulGrpPvar1RV
43 5 40 41 42 fvmptd3 φj0..^Ni0..^NFi=imulGrpPvar1R
44 32 36 37 37 38 39 43 offval φj0..^NAPfF=i0..^NAiPimulGrpPvar1R
45 44 oveq2d φj0..^NPAPfF=Pi0..^NAiPimulGrpPvar1R
46 45 fveq2d φj0..^Ncoe1PAPfF=coe1Pi0..^NAiPimulGrpPvar1R
47 46 fveq1d φj0..^Ncoe1PAPfFj=coe1Pi0..^NAiPimulGrpPvar1Rj
48 eqid var1R=var1R
49 eqid mulGrpP=mulGrpP
50 4 adantr φj0..^NRRing
51 eqid P=P
52 8 adantr φj0..^NA:0..^NB
53 52 ffvelcdmda φj0..^Ni0..^NAiB
54 53 ralrimiva φj0..^Ni0..^NAiB
55 3 adantr φj0..^NN0
56 fveq2 i=jAi=Aj
57 1 12 48 49 50 2 51 6 54 22 55 56 gsummoncoe1fzo φj0..^Ncoe1Pi0..^NAiPimulGrpPvar1Rj=Aj
58 47 57 eqtrd φj0..^Ncoe1PAPfFj=Aj
59 23 31 58 3eqtr2rd φj0..^NAj=coe1Z0..^Nj
60 10 21 59 eqfnfvd φA=coe1Z0..^N
61 1 7 6 coe1z RRingcoe1Z=0×0˙
62 4 61 syl φcoe1Z=0×0˙
63 62 reseq1d φcoe1Z0..^N=0×0˙0..^N
64 60 63 eqtrd φA=0×0˙0..^N
65 xpssres 0..^N00×0˙0..^N=0..^N×0˙
66 19 65 ax-mp 0×0˙0..^N=0..^N×0˙
67 64 66 eqtrdi φA=0..^N×0˙