Description: Lemma 3 for ply1mulgsum . (Contributed by AV, 20-Oct-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ply1mulgsum.p | |
|
ply1mulgsum.b | |
||
ply1mulgsum.a | |
||
ply1mulgsum.c | |
||
ply1mulgsum.x | |
||
ply1mulgsum.pm | |
||
ply1mulgsum.sm | |
||
ply1mulgsum.rm | |
||
ply1mulgsum.m | |
||
ply1mulgsum.e | |
||
Assertion | ply1mulgsumlem3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ply1mulgsum.p | |
|
2 | ply1mulgsum.b | |
|
3 | ply1mulgsum.a | |
|
4 | ply1mulgsum.c | |
|
5 | ply1mulgsum.x | |
|
6 | ply1mulgsum.pm | |
|
7 | ply1mulgsum.sm | |
|
8 | ply1mulgsum.rm | |
|
9 | ply1mulgsum.m | |
|
10 | ply1mulgsum.e | |
|
11 | fvexd | |
|
12 | ovexd | |
|
13 | 1 2 3 4 5 6 7 8 9 10 | ply1mulgsumlem2 | |
14 | vex | |
|
15 | csbov2g | |
|
16 | id | |
|
17 | oveq2 | |
|
18 | fvoveq1 | |
|
19 | 18 | oveq2d | |
20 | 17 19 | mpteq12dv | |
21 | 20 | adantl | |
22 | 16 21 | csbied | |
23 | 22 | oveq2d | |
24 | 15 23 | eqtrd | |
25 | 14 24 | ax-mp | |
26 | simpr | |
|
27 | 25 26 | eqtrid | |
28 | 27 | ex | |
29 | 28 | imim2d | |
30 | 29 | ralimdva | |
31 | 30 | reximdva | |
32 | 13 31 | mpd | |
33 | 11 12 32 | mptnn0fsupp | |