Metamath Proof Explorer


Theorem ply1mulgsumlem3

Description: Lemma 3 for ply1mulgsum . (Contributed by AV, 20-Oct-2019)

Ref Expression
Hypotheses ply1mulgsum.p P = Poly 1 R
ply1mulgsum.b B = Base P
ply1mulgsum.a A = coe 1 K
ply1mulgsum.c C = coe 1 L
ply1mulgsum.x X = var 1 R
ply1mulgsum.pm × ˙ = P
ply1mulgsum.sm · ˙ = P
ply1mulgsum.rm ˙ = R
ply1mulgsum.m M = mulGrp P
ply1mulgsum.e × ˙ = M
Assertion ply1mulgsumlem3 R Ring K B L B finSupp 0 R k 0 R l = 0 k A l ˙ C k l

Proof

Step Hyp Ref Expression
1 ply1mulgsum.p P = Poly 1 R
2 ply1mulgsum.b B = Base P
3 ply1mulgsum.a A = coe 1 K
4 ply1mulgsum.c C = coe 1 L
5 ply1mulgsum.x X = var 1 R
6 ply1mulgsum.pm × ˙ = P
7 ply1mulgsum.sm · ˙ = P
8 ply1mulgsum.rm ˙ = R
9 ply1mulgsum.m M = mulGrp P
10 ply1mulgsum.e × ˙ = M
11 fvexd R Ring K B L B 0 R V
12 ovexd R Ring K B L B k 0 R l = 0 k A l ˙ C k l V
13 1 2 3 4 5 6 7 8 9 10 ply1mulgsumlem2 R Ring K B L B s 0 n 0 s < n R l = 0 n A l ˙ C n l = 0 R
14 vex n V
15 csbov2g n V n / k R l = 0 k A l ˙ C k l = R n / k l 0 k A l ˙ C k l
16 id n V n V
17 oveq2 k = n 0 k = 0 n
18 fvoveq1 k = n C k l = C n l
19 18 oveq2d k = n A l ˙ C k l = A l ˙ C n l
20 17 19 mpteq12dv k = n l 0 k A l ˙ C k l = l 0 n A l ˙ C n l
21 20 adantl n V k = n l 0 k A l ˙ C k l = l 0 n A l ˙ C n l
22 16 21 csbied n V n / k l 0 k A l ˙ C k l = l 0 n A l ˙ C n l
23 22 oveq2d n V R n / k l 0 k A l ˙ C k l = R l = 0 n A l ˙ C n l
24 15 23 eqtrd n V n / k R l = 0 k A l ˙ C k l = R l = 0 n A l ˙ C n l
25 14 24 ax-mp n / k R l = 0 k A l ˙ C k l = R l = 0 n A l ˙ C n l
26 simpr R Ring K B L B s 0 n 0 R l = 0 n A l ˙ C n l = 0 R R l = 0 n A l ˙ C n l = 0 R
27 25 26 syl5eq R Ring K B L B s 0 n 0 R l = 0 n A l ˙ C n l = 0 R n / k R l = 0 k A l ˙ C k l = 0 R
28 27 ex R Ring K B L B s 0 n 0 R l = 0 n A l ˙ C n l = 0 R n / k R l = 0 k A l ˙ C k l = 0 R
29 28 imim2d R Ring K B L B s 0 n 0 s < n R l = 0 n A l ˙ C n l = 0 R s < n n / k R l = 0 k A l ˙ C k l = 0 R
30 29 ralimdva R Ring K B L B s 0 n 0 s < n R l = 0 n A l ˙ C n l = 0 R n 0 s < n n / k R l = 0 k A l ˙ C k l = 0 R
31 30 reximdva R Ring K B L B s 0 n 0 s < n R l = 0 n A l ˙ C n l = 0 R s 0 n 0 s < n n / k R l = 0 k A l ˙ C k l = 0 R
32 13 31 mpd R Ring K B L B s 0 n 0 s < n n / k R l = 0 k A l ˙ C k l = 0 R
33 11 12 32 mptnn0fsupp R Ring K B L B finSupp 0 R k 0 R l = 0 k A l ˙ C k l