Metamath Proof Explorer


Theorem ply1mulgsumlem3

Description: Lemma 3 for ply1mulgsum . (Contributed by AV, 20-Oct-2019)

Ref Expression
Hypotheses ply1mulgsum.p P=Poly1R
ply1mulgsum.b B=BaseP
ply1mulgsum.a A=coe1K
ply1mulgsum.c C=coe1L
ply1mulgsum.x X=var1R
ply1mulgsum.pm ×˙=P
ply1mulgsum.sm ·˙=P
ply1mulgsum.rm ˙=R
ply1mulgsum.m M=mulGrpP
ply1mulgsum.e ×˙=M
Assertion ply1mulgsumlem3 RRingKBLBfinSupp0Rk0Rl=0kAl˙Ckl

Proof

Step Hyp Ref Expression
1 ply1mulgsum.p P=Poly1R
2 ply1mulgsum.b B=BaseP
3 ply1mulgsum.a A=coe1K
4 ply1mulgsum.c C=coe1L
5 ply1mulgsum.x X=var1R
6 ply1mulgsum.pm ×˙=P
7 ply1mulgsum.sm ·˙=P
8 ply1mulgsum.rm ˙=R
9 ply1mulgsum.m M=mulGrpP
10 ply1mulgsum.e ×˙=M
11 fvexd RRingKBLB0RV
12 ovexd RRingKBLBk0Rl=0kAl˙CklV
13 1 2 3 4 5 6 7 8 9 10 ply1mulgsumlem2 RRingKBLBs0n0s<nRl=0nAl˙Cnl=0R
14 vex nV
15 csbov2g nVn/kRl=0kAl˙Ckl=Rn/kl0kAl˙Ckl
16 id nVnV
17 oveq2 k=n0k=0n
18 fvoveq1 k=nCkl=Cnl
19 18 oveq2d k=nAl˙Ckl=Al˙Cnl
20 17 19 mpteq12dv k=nl0kAl˙Ckl=l0nAl˙Cnl
21 20 adantl nVk=nl0kAl˙Ckl=l0nAl˙Cnl
22 16 21 csbied nVn/kl0kAl˙Ckl=l0nAl˙Cnl
23 22 oveq2d nVRn/kl0kAl˙Ckl=Rl=0nAl˙Cnl
24 15 23 eqtrd nVn/kRl=0kAl˙Ckl=Rl=0nAl˙Cnl
25 14 24 ax-mp n/kRl=0kAl˙Ckl=Rl=0nAl˙Cnl
26 simpr RRingKBLBs0n0Rl=0nAl˙Cnl=0RRl=0nAl˙Cnl=0R
27 25 26 eqtrid RRingKBLBs0n0Rl=0nAl˙Cnl=0Rn/kRl=0kAl˙Ckl=0R
28 27 ex RRingKBLBs0n0Rl=0nAl˙Cnl=0Rn/kRl=0kAl˙Ckl=0R
29 28 imim2d RRingKBLBs0n0s<nRl=0nAl˙Cnl=0Rs<nn/kRl=0kAl˙Ckl=0R
30 29 ralimdva RRingKBLBs0n0s<nRl=0nAl˙Cnl=0Rn0s<nn/kRl=0kAl˙Ckl=0R
31 30 reximdva RRingKBLBs0n0s<nRl=0nAl˙Cnl=0Rs0n0s<nn/kRl=0kAl˙Ckl=0R
32 13 31 mpd RRingKBLBs0n0s<nn/kRl=0kAl˙Ckl=0R
33 11 12 32 mptnn0fsupp RRingKBLBfinSupp0Rk0Rl=0kAl˙Ckl