Metamath Proof Explorer


Theorem plymul

Description: The product of two polynomials is a polynomial. (Contributed by Mario Carneiro, 21-Jul-2014)

Ref Expression
Hypotheses plyadd.1 φFPolyS
plyadd.2 φGPolyS
plyadd.3 φxSySx+yS
plymul.4 φxSySxyS
Assertion plymul φF×fGPolyS

Proof

Step Hyp Ref Expression
1 plyadd.1 φFPolyS
2 plyadd.2 φGPolyS
3 plyadd.3 φxSySx+yS
4 plymul.4 φxSySxyS
5 elply2 FPolySSm0aS00am+1=0F=zk=0makzk
6 5 simprbi FPolySm0aS00am+1=0F=zk=0makzk
7 1 6 syl φm0aS00am+1=0F=zk=0makzk
8 elply2 GPolySSn0bS00bn+1=0G=zk=0nbkzk
9 8 simprbi GPolySn0bS00bn+1=0G=zk=0nbkzk
10 2 9 syl φn0bS00bn+1=0G=zk=0nbkzk
11 reeanv m0n0aS00am+1=0F=zk=0makzkbS00bn+1=0G=zk=0nbkzkm0aS00am+1=0F=zk=0makzkn0bS00bn+1=0G=zk=0nbkzk
12 reeanv aS00bS00am+1=0F=zk=0makzkbn+1=0G=zk=0nbkzkaS00am+1=0F=zk=0makzkbS00bn+1=0G=zk=0nbkzk
13 simp1l φm0n0aS00bS00am+1=0F=zk=0makzkbn+1=0G=zk=0nbkzkφ
14 13 1 syl φm0n0aS00bS00am+1=0F=zk=0makzkbn+1=0G=zk=0nbkzkFPolyS
15 13 2 syl φm0n0aS00bS00am+1=0F=zk=0makzkbn+1=0G=zk=0nbkzkGPolyS
16 13 3 sylan φm0n0aS00bS00am+1=0F=zk=0makzkbn+1=0G=zk=0nbkzkxSySx+yS
17 simp1rl φm0n0aS00bS00am+1=0F=zk=0makzkbn+1=0G=zk=0nbkzkm0
18 simp1rr φm0n0aS00bS00am+1=0F=zk=0makzkbn+1=0G=zk=0nbkzkn0
19 simp2l φm0n0aS00bS00am+1=0F=zk=0makzkbn+1=0G=zk=0nbkzkaS00
20 simp2r φm0n0aS00bS00am+1=0F=zk=0makzkbn+1=0G=zk=0nbkzkbS00
21 simp3ll φm0n0aS00bS00am+1=0F=zk=0makzkbn+1=0G=zk=0nbkzkam+1=0
22 simp3rl φm0n0aS00bS00am+1=0F=zk=0makzkbn+1=0G=zk=0nbkzkbn+1=0
23 simp3lr φm0n0aS00bS00am+1=0F=zk=0makzkbn+1=0G=zk=0nbkzkF=zk=0makzk
24 oveq1 z=wzk=wk
25 24 oveq2d z=wakzk=akwk
26 25 sumeq2sdv z=wk=0makzk=k=0makwk
27 fveq2 k=jak=aj
28 oveq2 k=jwk=wj
29 27 28 oveq12d k=jakwk=ajwj
30 29 cbvsumv k=0makwk=j=0majwj
31 26 30 eqtrdi z=wk=0makzk=j=0majwj
32 31 cbvmptv zk=0makzk=wj=0majwj
33 23 32 eqtrdi φm0n0aS00bS00am+1=0F=zk=0makzkbn+1=0G=zk=0nbkzkF=wj=0majwj
34 simp3rr φm0n0aS00bS00am+1=0F=zk=0makzkbn+1=0G=zk=0nbkzkG=zk=0nbkzk
35 24 oveq2d z=wbkzk=bkwk
36 35 sumeq2sdv z=wk=0nbkzk=k=0nbkwk
37 fveq2 k=jbk=bj
38 37 28 oveq12d k=jbkwk=bjwj
39 38 cbvsumv k=0nbkwk=j=0nbjwj
40 36 39 eqtrdi z=wk=0nbkzk=j=0nbjwj
41 40 cbvmptv zk=0nbkzk=wj=0nbjwj
42 34 41 eqtrdi φm0n0aS00bS00am+1=0F=zk=0makzkbn+1=0G=zk=0nbkzkG=wj=0nbjwj
43 13 4 sylan φm0n0aS00bS00am+1=0F=zk=0makzkbn+1=0G=zk=0nbkzkxSySxyS
44 14 15 16 17 18 19 20 21 22 33 42 43 plymullem φm0n0aS00bS00am+1=0F=zk=0makzkbn+1=0G=zk=0nbkzkF×fGPolyS
45 44 3expia φm0n0aS00bS00am+1=0F=zk=0makzkbn+1=0G=zk=0nbkzkF×fGPolyS
46 45 rexlimdvva φm0n0aS00bS00am+1=0F=zk=0makzkbn+1=0G=zk=0nbkzkF×fGPolyS
47 12 46 biimtrrid φm0n0aS00am+1=0F=zk=0makzkbS00bn+1=0G=zk=0nbkzkF×fGPolyS
48 47 rexlimdvva φm0n0aS00am+1=0F=zk=0makzkbS00bn+1=0G=zk=0nbkzkF×fGPolyS
49 11 48 biimtrrid φm0aS00am+1=0F=zk=0makzkn0bS00bn+1=0G=zk=0nbkzkF×fGPolyS
50 7 10 49 mp2and φF×fGPolyS