Description: The product of two polynomials is a polynomial. (Contributed by Mario Carneiro, 21-Jul-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | plyadd.1 | |
|
plyadd.2 | |
||
plyadd.3 | |
||
plymul.4 | |
||
Assertion | plymul | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | plyadd.1 | |
|
2 | plyadd.2 | |
|
3 | plyadd.3 | |
|
4 | plymul.4 | |
|
5 | elply2 | |
|
6 | 5 | simprbi | |
7 | 1 6 | syl | |
8 | elply2 | |
|
9 | 8 | simprbi | |
10 | 2 9 | syl | |
11 | reeanv | |
|
12 | reeanv | |
|
13 | simp1l | |
|
14 | 13 1 | syl | |
15 | 13 2 | syl | |
16 | 13 3 | sylan | |
17 | simp1rl | |
|
18 | simp1rr | |
|
19 | simp2l | |
|
20 | simp2r | |
|
21 | simp3ll | |
|
22 | simp3rl | |
|
23 | simp3lr | |
|
24 | oveq1 | |
|
25 | 24 | oveq2d | |
26 | 25 | sumeq2sdv | |
27 | fveq2 | |
|
28 | oveq2 | |
|
29 | 27 28 | oveq12d | |
30 | 29 | cbvsumv | |
31 | 26 30 | eqtrdi | |
32 | 31 | cbvmptv | |
33 | 23 32 | eqtrdi | |
34 | simp3rr | |
|
35 | 24 | oveq2d | |
36 | 35 | sumeq2sdv | |
37 | fveq2 | |
|
38 | 37 28 | oveq12d | |
39 | 38 | cbvsumv | |
40 | 36 39 | eqtrdi | |
41 | 40 | cbvmptv | |
42 | 34 41 | eqtrdi | |
43 | 13 4 | sylan | |
44 | 14 15 16 17 18 19 20 21 22 33 42 43 | plymullem | |
45 | 44 | 3expia | |
46 | 45 | rexlimdvva | |
47 | 12 46 | biimtrrid | |
48 | 47 | rexlimdvva | |
49 | 11 48 | biimtrrid | |
50 | 7 10 49 | mp2and | |