Metamath Proof Explorer


Theorem pmltpc

Description: Any function on the reals is either increasing, decreasing, or has a triple of points in a vee formation. (This theorem was created on demand by Mario Carneiro for the 6PCM conference in Bialystok, 1-Jul-2014.) (Contributed by Mario Carneiro, 1-Jul-2014)

Ref Expression
Assertion pmltpc F𝑝𝑚AdomFxAyAxyFxFyxAyAxyFyFxaAbAcAa<bb<cFa<FbFc<FbFb<FaFb<Fc

Proof

Step Hyp Ref Expression
1 rexanali yAxy¬FxFy¬yAxyFxFy
2 1 rexbii xAyAxy¬FxFyxA¬yAxyFxFy
3 rexnal xA¬yAxyFxFy¬xAyAxyFxFy
4 2 3 bitri xAyAxy¬FxFy¬xAyAxyFxFy
5 rexanali wAzw¬FwFz¬wAzwFwFz
6 5 rexbii zAwAzw¬FwFzzA¬wAzwFwFz
7 rexnal zA¬wAzwFwFz¬zAwAzwFwFz
8 breq1 z=xzwxw
9 fveq2 z=xFz=Fx
10 9 breq2d z=xFwFzFwFx
11 8 10 imbi12d z=xzwFwFzxwFwFx
12 breq2 w=yxwxy
13 fveq2 w=yFw=Fy
14 13 breq1d w=yFwFxFyFx
15 12 14 imbi12d w=yxwFwFxxyFyFx
16 11 15 cbvral2vw zAwAzwFwFzxAyAxyFyFx
17 7 16 xchbinx zA¬wAzwFwFz¬xAyAxyFyFx
18 6 17 bitri zAwAzw¬FwFz¬xAyAxyFyFx
19 4 18 anbi12i xAyAxy¬FxFyzAwAzw¬FwFz¬xAyAxyFxFy¬xAyAxyFyFx
20 reeanv xAzAyAxy¬FxFywAzw¬FwFzxAyAxy¬FxFyzAwAzw¬FwFz
21 ioran ¬xAyAxyFxFyxAyAxyFyFx¬xAyAxyFxFy¬xAyAxyFyFx
22 19 20 21 3bitr4i xAzAyAxy¬FxFywAzw¬FwFz¬xAyAxyFxFyxAyAxyFyFx
23 reeanv yAwAxy¬FxFyzw¬FwFzyAxy¬FxFywAzw¬FwFz
24 simplll F𝑝𝑚AdomFxAzAyAwAxy¬FxFyzw¬FwFzF𝑝𝑚AdomF
25 24 simpld F𝑝𝑚AdomFxAzAyAwAxy¬FxFyzw¬FwFzF𝑝𝑚
26 24 simprd F𝑝𝑚AdomFxAzAyAwAxy¬FxFyzw¬FwFzAdomF
27 simpllr F𝑝𝑚AdomFxAzAyAwAxy¬FxFyzw¬FwFzxAzA
28 27 simpld F𝑝𝑚AdomFxAzAyAwAxy¬FxFyzw¬FwFzxA
29 simplrl F𝑝𝑚AdomFxAzAyAwAxy¬FxFyzw¬FwFzyA
30 27 simprd F𝑝𝑚AdomFxAzAyAwAxy¬FxFyzw¬FwFzzA
31 simplrr F𝑝𝑚AdomFxAzAyAwAxy¬FxFyzw¬FwFzwA
32 simprll F𝑝𝑚AdomFxAzAyAwAxy¬FxFyzw¬FwFzxy
33 simprrl F𝑝𝑚AdomFxAzAyAwAxy¬FxFyzw¬FwFzzw
34 simprlr F𝑝𝑚AdomFxAzAyAwAxy¬FxFyzw¬FwFz¬FxFy
35 simprrr F𝑝𝑚AdomFxAzAyAwAxy¬FxFyzw¬FwFz¬FwFz
36 25 26 28 29 30 31 32 33 34 35 pmltpclem2 F𝑝𝑚AdomFxAzAyAwAxy¬FxFyzw¬FwFzaAbAcAa<bb<cFa<FbFc<FbFb<FaFb<Fc
37 36 ex F𝑝𝑚AdomFxAzAyAwAxy¬FxFyzw¬FwFzaAbAcAa<bb<cFa<FbFc<FbFb<FaFb<Fc
38 37 rexlimdvva F𝑝𝑚AdomFxAzAyAwAxy¬FxFyzw¬FwFzaAbAcAa<bb<cFa<FbFc<FbFb<FaFb<Fc
39 23 38 biimtrrid F𝑝𝑚AdomFxAzAyAxy¬FxFywAzw¬FwFzaAbAcAa<bb<cFa<FbFc<FbFb<FaFb<Fc
40 39 rexlimdvva F𝑝𝑚AdomFxAzAyAxy¬FxFywAzw¬FwFzaAbAcAa<bb<cFa<FbFc<FbFb<FaFb<Fc
41 22 40 biimtrrid F𝑝𝑚AdomF¬xAyAxyFxFyxAyAxyFyFxaAbAcAa<bb<cFa<FbFc<FbFb<FaFb<Fc
42 41 orrd F𝑝𝑚AdomFxAyAxyFxFyxAyAxyFyFxaAbAcAa<bb<cFa<FbFc<FbFb<FaFb<Fc
43 df-3or xAyAxyFxFyxAyAxyFyFxaAbAcAa<bb<cFa<FbFc<FbFb<FaFb<FcxAyAxyFxFyxAyAxyFyFxaAbAcAa<bb<cFa<FbFc<FbFb<FaFb<Fc
44 42 43 sylibr F𝑝𝑚AdomFxAyAxyFxFyxAyAxyFyFxaAbAcAa<bb<cFa<FbFc<FbFb<FaFb<Fc