Metamath Proof Explorer


Theorem pmltpclem2

Description: Lemma for pmltpc . (Contributed by Mario Carneiro, 1-Jul-2014)

Ref Expression
Hypotheses pmltpc.1 φF𝑝𝑚
pmltpc.2 φAdomF
pmltpc.3 φUA
pmltpc.4 φVA
pmltpc.5 φWA
pmltpc.6 φXA
pmltpc.7 φUV
pmltpc.8 φWX
pmltpc.9 φ¬FUFV
pmltpc.10 φ¬FXFW
Assertion pmltpclem2 φaAbAcAa<bb<cFa<FbFc<FbFb<FaFb<Fc

Proof

Step Hyp Ref Expression
1 pmltpc.1 φF𝑝𝑚
2 pmltpc.2 φAdomF
3 pmltpc.3 φUA
4 pmltpc.4 φVA
5 pmltpc.5 φWA
6 pmltpc.6 φXA
7 pmltpc.7 φUV
8 pmltpc.8 φWX
9 pmltpc.9 φ¬FUFV
10 pmltpc.10 φ¬FXFW
11 5 ad2antrr φFW<FUW<UWA
12 3 ad2antrr φFW<FUW<UUA
13 4 ad2antrr φFW<FUW<UVA
14 simpr φFW<FUW<UW<U
15 reex V
16 15 15 elpm2 F𝑝𝑚F:domFdomF
17 1 16 sylib φF:domFdomF
18 17 simprd φdomF
19 2 3 sseldd φUdomF
20 18 19 sseldd φU
21 2 4 sseldd φVdomF
22 18 21 sseldd φV
23 17 simpld φF:domF
24 23 21 ffvelcdmd φFV
25 23 19 ffvelcdmd φFU
26 24 25 ltnled φFV<FU¬FUFV
27 9 26 mpbird φFV<FU
28 24 27 gtned φFUFV
29 fveq2 V=UFV=FU
30 29 eqcomd V=UFU=FV
31 30 necon3i FUFVVU
32 28 31 syl φVU
33 20 22 7 32 leneltd φU<V
34 33 ad2antrr φFW<FUW<UU<V
35 simplr φFW<FUW<UFW<FU
36 27 ad2antrr φFW<FUW<UFV<FU
37 35 36 jca φFW<FUW<UFW<FUFV<FU
38 37 orcd φFW<FUW<UFW<FUFV<FUFU<FWFU<FV
39 11 12 13 14 34 38 pmltpclem1 φFW<FUW<UaAbAcAa<bb<cFa<FbFc<FbFb<FaFb<Fc
40 3 ad2antrr φFW<FUUWUA
41 5 ad2antrr φFW<FUUWWA
42 6 ad2antrr φFW<FUUWXA
43 20 ad2antrr φFW<FUUWU
44 2 5 sseldd φWdomF
45 18 44 sseldd φW
46 45 ad2antrr φFW<FUUWW
47 simpr φFW<FUUWUW
48 23 44 ffvelcdmd φFW
49 48 ad2antrr φFW<FUUWFW
50 simplr φFW<FUUWFW<FU
51 49 50 gtned φFW<FUUWFUFW
52 fveq2 W=UFW=FU
53 52 eqcomd W=UFU=FW
54 53 necon3i FUFWWU
55 51 54 syl φFW<FUUWWU
56 43 46 47 55 leneltd φFW<FUUWU<W
57 2 6 sseldd φXdomF
58 18 57 sseldd φX
59 23 57 ffvelcdmd φFX
60 48 59 ltnled φFW<FX¬FXFW
61 10 60 mpbird φFW<FX
62 48 61 gtned φFXFW
63 fveq2 X=WFX=FW
64 63 necon3i FXFWXW
65 62 64 syl φXW
66 45 58 8 65 leneltd φW<X
67 66 ad2antrr φFW<FUUWW<X
68 61 ad2antrr φFW<FUUWFW<FX
69 50 68 jca φFW<FUUWFW<FUFW<FX
70 69 olcd φFW<FUUWFU<FWFX<FWFW<FUFW<FX
71 40 41 42 56 67 70 pmltpclem1 φFW<FUUWaAbAcAa<bb<cFa<FbFc<FbFb<FaFb<Fc
72 45 adantr φFW<FUW
73 20 adantr φFW<FUU
74 39 71 72 73 ltlecasei φFW<FUaAbAcAa<bb<cFa<FbFc<FbFb<FaFb<Fc
75 3 ad2antrr φFUFWV<XUA
76 4 ad2antrr φFUFWV<XVA
77 6 ad2antrr φFUFWV<XXA
78 33 ad2antrr φFUFWV<XU<V
79 simpr φFUFWV<XV<X
80 27 ad2antrr φFUFWV<XFV<FU
81 24 adantr φFUFWFV
82 25 adantr φFUFWFU
83 59 adantr φFUFWFX
84 27 adantr φFUFWFV<FU
85 48 adantr φFUFWFW
86 simpr φFUFWFUFW
87 61 adantr φFUFWFW<FX
88 82 85 83 86 87 lelttrd φFUFWFU<FX
89 81 82 83 84 88 lttrd φFUFWFV<FX
90 89 adantr φFUFWV<XFV<FX
91 80 90 jca φFUFWV<XFV<FUFV<FX
92 91 olcd φFUFWV<XFU<FVFX<FVFV<FUFV<FX
93 75 76 77 78 79 92 pmltpclem1 φFUFWV<XaAbAcAa<bb<cFa<FbFc<FbFb<FaFb<Fc
94 5 ad2antrr φFUFWXVWA
95 6 ad2antrr φFUFWXVXA
96 4 ad2antrr φFUFWXVVA
97 66 ad2antrr φFUFWXVW<X
98 58 ad2antrr φFUFWXVX
99 22 ad2antrr φFUFWXVV
100 simpr φFUFWXVXV
101 24 ad2antrr φFUFWXVFV
102 89 adantr φFUFWXVFV<FX
103 101 102 gtned φFUFWXVFXFV
104 fveq2 V=XFV=FX
105 104 eqcomd V=XFX=FV
106 105 necon3i FXFVVX
107 103 106 syl φFUFWXVVX
108 98 99 100 107 leneltd φFUFWXVX<V
109 61 ad2antrr φFUFWXVFW<FX
110 109 102 jca φFUFWXVFW<FXFV<FX
111 110 orcd φFUFWXVFW<FXFV<FXFX<FWFX<FV
112 94 95 96 97 108 111 pmltpclem1 φFUFWXVaAbAcAa<bb<cFa<FbFc<FbFb<FaFb<Fc
113 22 adantr φFUFWV
114 58 adantr φFUFWX
115 93 112 113 114 ltlecasei φFUFWaAbAcAa<bb<cFa<FbFc<FbFb<FaFb<Fc
116 74 115 48 25 ltlecasei φaAbAcAa<bb<cFa<FbFc<FbFb<FaFb<Fc