Metamath Proof Explorer


Theorem pmtrfrn

Description: A transposition (as a kind of function) is the function transposing the two points it moves. (Contributed by Stefan O'Rear, 22-Aug-2015)

Ref Expression
Hypotheses pmtrrn.t T=pmTrspD
pmtrrn.r R=ranT
pmtrfrn.p P=domFI
Assertion pmtrfrn FRDVPDP2𝑜F=TP

Proof

Step Hyp Ref Expression
1 pmtrrn.t T=pmTrspD
2 pmtrrn.r R=ranT
3 pmtrfrn.p P=domFI
4 noel ¬F
5 1 rnfvprc ¬DVranT=
6 2 5 eqtrid ¬DVR=
7 6 eleq2d ¬DVFRF
8 4 7 mtbiri ¬DV¬FR
9 8 con4i FRDV
10 mptexg DVzDifzwwzzV
11 10 ralrimivw DVwx𝒫D|x2𝑜zDifzwwzzV
12 eqid wx𝒫D|x2𝑜zDifzwwzz=wx𝒫D|x2𝑜zDifzwwzz
13 12 fnmpt wx𝒫D|x2𝑜zDifzwwzzVwx𝒫D|x2𝑜zDifzwwzzFnx𝒫D|x2𝑜
14 11 13 syl DVwx𝒫D|x2𝑜zDifzwwzzFnx𝒫D|x2𝑜
15 1 pmtrfval DVT=wx𝒫D|x2𝑜zDifzwwzz
16 15 fneq1d DVTFnx𝒫D|x2𝑜wx𝒫D|x2𝑜zDifzwwzzFnx𝒫D|x2𝑜
17 14 16 mpbird DVTFnx𝒫D|x2𝑜
18 fvelrnb TFnx𝒫D|x2𝑜FranTyx𝒫D|x2𝑜Ty=F
19 17 18 syl DVFranTyx𝒫D|x2𝑜Ty=F
20 2 eleq2i FRFranT
21 breq1 x=yx2𝑜y2𝑜
22 21 rexrab yx𝒫D|x2𝑜Ty=Fy𝒫Dy2𝑜Ty=F
23 22 bicomi y𝒫Dy2𝑜Ty=Fyx𝒫D|x2𝑜Ty=F
24 19 20 23 3bitr4g DVFRy𝒫Dy2𝑜Ty=F
25 elpwi y𝒫DyD
26 simp1 DVyDy2𝑜DV
27 1 pmtrmvd DVyDy2𝑜domTyI=y
28 simp2 DVyDy2𝑜yD
29 27 28 eqsstrd DVyDy2𝑜domTyID
30 simp3 DVyDy2𝑜y2𝑜
31 27 30 eqbrtrd DVyDy2𝑜domTyI2𝑜
32 26 29 31 3jca DVyDy2𝑜DVdomTyIDdomTyI2𝑜
33 27 eqcomd DVyDy2𝑜y=domTyI
34 33 fveq2d DVyDy2𝑜Ty=TdomTyI
35 32 34 jca DVyDy2𝑜DVdomTyIDdomTyI2𝑜Ty=TdomTyI
36 difeq1 Ty=FTyI=FI
37 36 dmeqd Ty=FdomTyI=domFI
38 37 3 eqtr4di Ty=FdomTyI=P
39 sseq1 domTyI=PdomTyIDPD
40 breq1 domTyI=PdomTyI2𝑜P2𝑜
41 39 40 3anbi23d domTyI=PDVdomTyIDdomTyI2𝑜DVPDP2𝑜
42 41 adantl Ty=FdomTyI=PDVdomTyIDdomTyI2𝑜DVPDP2𝑜
43 simpl Ty=FdomTyI=PTy=F
44 fveq2 domTyI=PTdomTyI=TP
45 44 adantl Ty=FdomTyI=PTdomTyI=TP
46 43 45 eqeq12d Ty=FdomTyI=PTy=TdomTyIF=TP
47 42 46 anbi12d Ty=FdomTyI=PDVdomTyIDdomTyI2𝑜Ty=TdomTyIDVPDP2𝑜F=TP
48 38 47 mpdan Ty=FDVdomTyIDdomTyI2𝑜Ty=TdomTyIDVPDP2𝑜F=TP
49 35 48 syl5ibcom DVyDy2𝑜Ty=FDVPDP2𝑜F=TP
50 49 3exp DVyDy2𝑜Ty=FDVPDP2𝑜F=TP
51 50 imp4a DVyDy2𝑜Ty=FDVPDP2𝑜F=TP
52 25 51 syl5 DVy𝒫Dy2𝑜Ty=FDVPDP2𝑜F=TP
53 52 rexlimdv DVy𝒫Dy2𝑜Ty=FDVPDP2𝑜F=TP
54 24 53 sylbid DVFRDVPDP2𝑜F=TP
55 9 54 mpcom FRDVPDP2𝑜F=TP