Metamath Proof Explorer


Theorem pmtrprfval

Description: The transpositions on a pair. (Contributed by AV, 9-Dec-2018)

Ref Expression
Assertion pmtrprfval pmTrsp12=p12z12ifz=121

Proof

Step Hyp Ref Expression
1 prex 12V
2 eqid pmTrsp12=pmTrsp12
3 2 pmtrfval 12VpmTrsp12=pt𝒫12|t2𝑜z12ifzppzz
4 1 3 ax-mp pmTrsp12=pt𝒫12|t2𝑜z12ifzppzz
5 1ex 1V
6 2nn0 20
7 1ne2 12
8 pr2pwpr 1V2012t𝒫12|t2𝑜=12
9 5 6 7 8 mp3an t𝒫12|t2𝑜=12
10 9 mpteq1i pt𝒫12|t2𝑜z12ifzppzz=p12z12ifzppzz
11 elsni p12p=12
12 eleq2 p=12zpz12
13 12 biimpar p=12z12zp
14 13 iftrued p=12z12ifzppzz=pz
15 elpri z12z=1z=2
16 2ex 2V
17 16 unisn 2=2
18 simpr z=1p=12p=12
19 sneq z=1z=1
20 19 adantr z=1p=12z=1
21 18 20 difeq12d z=1p=12pz=121
22 difprsn1 12121=2
23 7 22 ax-mp 121=2
24 21 23 eqtrdi z=1p=12pz=2
25 24 unieqd z=1p=12pz=2
26 iftrue z=1ifz=121=2
27 26 adantr z=1p=12ifz=121=2
28 17 25 27 3eqtr4a z=1p=12pz=ifz=121
29 28 ex z=1p=12pz=ifz=121
30 5 unisn 1=1
31 simpr z=2p=12p=12
32 sneq z=2z=2
33 32 adantr z=2p=12z=2
34 31 33 difeq12d z=2p=12pz=122
35 difprsn2 12122=1
36 7 35 ax-mp 122=1
37 34 36 eqtrdi z=2p=12pz=1
38 37 unieqd z=2p=12pz=1
39 7 nesymi ¬2=1
40 eqeq1 z=2z=12=1
41 39 40 mtbiri z=2¬z=1
42 41 iffalsed z=2ifz=121=1
43 42 adantr z=2p=12ifz=121=1
44 30 38 43 3eqtr4a z=2p=12pz=ifz=121
45 44 ex z=2p=12pz=ifz=121
46 29 45 jaoi z=1z=2p=12pz=ifz=121
47 15 46 syl z12p=12pz=ifz=121
48 47 impcom p=12z12pz=ifz=121
49 14 48 eqtrd p=12z12ifzppzz=ifz=121
50 11 49 sylan p12z12ifzppzz=ifz=121
51 50 mpteq2dva p12z12ifzppzz=z12ifz=121
52 51 mpteq2ia p12z12ifzppzz=p12z12ifz=121
53 10 52 eqtri pt𝒫12|t2𝑜z12ifzppzz=p12z12ifz=121
54 4 53 eqtri pmTrsp12=p12z12ifz=121