Description: Useful lemma for the following theorems. (Contributed by Thierry Arnoux, 21-Aug-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | psgnfzto1st.d | |
|
pmtrto1cl.t | |
||
Assertion | pmtrto1cl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psgnfzto1st.d | |
|
2 | pmtrto1cl.t | |
|
3 | fzfi | |
|
4 | 1 3 | eqeltri | |
5 | 4 | a1i | |
6 | simpl | |
|
7 | simpr | |
|
8 | 7 1 | eleqtrdi | |
9 | elfz1b | |
|
10 | 8 9 | sylib | |
11 | 10 | simp2d | |
12 | 6 | nnred | |
13 | 1red | |
|
14 | 12 13 | readdcld | |
15 | 11 | nnred | |
16 | 12 | lep1d | |
17 | 10 | simp3d | |
18 | 12 14 15 16 17 | letrd | |
19 | 6 11 18 | 3jca | |
20 | elfz1b | |
|
21 | 19 20 | sylibr | |
22 | 21 1 | eleqtrrdi | |
23 | prssi | |
|
24 | 22 7 23 | syl2anc | |
25 | 12 | ltp1d | |
26 | 12 25 | ltned | |
27 | enpr2 | |
|
28 | 22 7 26 27 | syl3anc | |
29 | eqid | |
|
30 | 2 29 | pmtrrn | |
31 | 5 24 28 30 | syl3anc | |