| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2polat.a |  | 
						
							| 2 |  | 2polat.p |  | 
						
							| 3 | 1 2 | 2polssN |  | 
						
							| 4 | 3 | ssrind |  | 
						
							| 5 |  | eqid |  | 
						
							| 6 |  | eqid |  | 
						
							| 7 | 5 1 6 2 | 2polvalN |  | 
						
							| 8 |  | eqid |  | 
						
							| 9 | 5 8 1 6 2 | polval2N |  | 
						
							| 10 | 7 9 | ineq12d |  | 
						
							| 11 |  | hlop |  | 
						
							| 12 | 11 | adantr |  | 
						
							| 13 |  | hlclat |  | 
						
							| 14 |  | eqid |  | 
						
							| 15 | 14 1 | atssbase |  | 
						
							| 16 |  | sstr |  | 
						
							| 17 | 15 16 | mpan2 |  | 
						
							| 18 | 14 5 | clatlubcl |  | 
						
							| 19 | 13 17 18 | syl2an |  | 
						
							| 20 |  | eqid |  | 
						
							| 21 |  | eqid |  | 
						
							| 22 | 14 8 20 21 | opnoncon |  | 
						
							| 23 | 12 19 22 | syl2anc |  | 
						
							| 24 | 23 | fveq2d |  | 
						
							| 25 |  | simpl |  | 
						
							| 26 | 14 8 | opoccl |  | 
						
							| 27 | 12 19 26 | syl2anc |  | 
						
							| 28 | 14 20 1 6 | pmapmeet |  | 
						
							| 29 | 25 19 27 28 | syl3anc |  | 
						
							| 30 |  | hlatl |  | 
						
							| 31 | 30 | adantr |  | 
						
							| 32 | 21 6 | pmap0 |  | 
						
							| 33 | 31 32 | syl |  | 
						
							| 34 | 24 29 33 | 3eqtr3d |  | 
						
							| 35 | 10 34 | eqtrd |  | 
						
							| 36 | 4 35 | sseqtrd |  | 
						
							| 37 |  | ss0b |  | 
						
							| 38 | 36 37 | sylib |  |