Metamath Proof Explorer


Theorem pnonsingN

Description: The intersection of a set of atoms and its polarity is empty. Definition of nonsingular in Holland95 p. 214. (Contributed by NM, 29-Jan-2012) (New usage is discouraged.)

Ref Expression
Hypotheses 2polat.a A=AtomsK
2polat.p P=𝑃K
Assertion pnonsingN KHLXAXPX=

Proof

Step Hyp Ref Expression
1 2polat.a A=AtomsK
2 2polat.p P=𝑃K
3 1 2 2polssN KHLXAXPPX
4 3 ssrind KHLXAXPXPPXPX
5 eqid lubK=lubK
6 eqid pmapK=pmapK
7 5 1 6 2 2polvalN KHLXAPPX=pmapKlubKX
8 eqid ocK=ocK
9 5 8 1 6 2 polval2N KHLXAPX=pmapKocKlubKX
10 7 9 ineq12d KHLXAPPXPX=pmapKlubKXpmapKocKlubKX
11 hlop KHLKOP
12 11 adantr KHLXAKOP
13 hlclat KHLKCLat
14 eqid BaseK=BaseK
15 14 1 atssbase ABaseK
16 sstr XAABaseKXBaseK
17 15 16 mpan2 XAXBaseK
18 14 5 clatlubcl KCLatXBaseKlubKXBaseK
19 13 17 18 syl2an KHLXAlubKXBaseK
20 eqid meetK=meetK
21 eqid 0.K=0.K
22 14 8 20 21 opnoncon KOPlubKXBaseKlubKXmeetKocKlubKX=0.K
23 12 19 22 syl2anc KHLXAlubKXmeetKocKlubKX=0.K
24 23 fveq2d KHLXApmapKlubKXmeetKocKlubKX=pmapK0.K
25 simpl KHLXAKHL
26 14 8 opoccl KOPlubKXBaseKocKlubKXBaseK
27 12 19 26 syl2anc KHLXAocKlubKXBaseK
28 14 20 1 6 pmapmeet KHLlubKXBaseKocKlubKXBaseKpmapKlubKXmeetKocKlubKX=pmapKlubKXpmapKocKlubKX
29 25 19 27 28 syl3anc KHLXApmapKlubKXmeetKocKlubKX=pmapKlubKXpmapKocKlubKX
30 hlatl KHLKAtLat
31 30 adantr KHLXAKAtLat
32 21 6 pmap0 KAtLatpmapK0.K=
33 31 32 syl KHLXApmapK0.K=
34 24 29 33 3eqtr3d KHLXApmapKlubKXpmapKocKlubKX=
35 10 34 eqtrd KHLXAPPXPX=
36 4 35 sseqtrd KHLXAXPX
37 ss0b XPXXPX=
38 36 37 sylib KHLXAXPX=