Description: Lemma for pnt . Closure for the constants used in the proof. The mammoth expression W is a number large enough to satisfy all the lower bounds needed for Z . For comparison with Equation 10.6.27 of Shapiro, p. 434, Y is x_2, X is x_1, C is the big-O constant in Equation 10.6.29 of Shapiro, p. 435, and W is the unnamed lower bound of "for sufficiently large x" in Equation 10.6.34 of Shapiro, p. 436. (Contributed by Mario Carneiro, 13-Apr-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | pntlem1.r | |
|
pntlem1.a | |
||
pntlem1.b | |
||
pntlem1.l | |
||
pntlem1.d | |
||
pntlem1.f | |
||
pntlem1.u | |
||
pntlem1.u2 | |
||
pntlem1.e | |
||
pntlem1.k | |
||
pntlem1.y | |
||
pntlem1.x | |
||
pntlem1.c | |
||
pntlem1.w | |
||
Assertion | pntlema | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pntlem1.r | |
|
2 | pntlem1.a | |
|
3 | pntlem1.b | |
|
4 | pntlem1.l | |
|
5 | pntlem1.d | |
|
6 | pntlem1.f | |
|
7 | pntlem1.u | |
|
8 | pntlem1.u2 | |
|
9 | pntlem1.e | |
|
10 | pntlem1.k | |
|
11 | pntlem1.y | |
|
12 | pntlem1.x | |
|
13 | pntlem1.c | |
|
14 | pntlem1.w | |
|
15 | 11 | simpld | |
16 | 4nn | |
|
17 | nnrp | |
|
18 | 16 17 | ax-mp | |
19 | 1 2 3 4 5 6 | pntlemd | |
20 | 19 | simp1d | |
21 | 1 2 3 4 5 6 7 8 9 10 | pntlemc | |
22 | 21 | simp1d | |
23 | 20 22 | rpmulcld | |
24 | rpdivcl | |
|
25 | 18 23 24 | sylancr | |
26 | 15 25 | rpaddcld | |
27 | 2z | |
|
28 | rpexpcl | |
|
29 | 26 27 28 | sylancl | |
30 | 12 | simpld | |
31 | 21 | simp2d | |
32 | rpexpcl | |
|
33 | 31 27 32 | sylancl | |
34 | 30 33 | rpmulcld | |
35 | 4z | |
|
36 | rpexpcl | |
|
37 | 34 35 36 | sylancl | |
38 | 3nn0 | |
|
39 | 2nn | |
|
40 | 38 39 | decnncl | |
41 | nnrp | |
|
42 | 40 41 | ax-mp | |
43 | rpmulcl | |
|
44 | 42 3 43 | sylancr | |
45 | 21 | simp3d | |
46 | 45 | simp3d | |
47 | rpexpcl | |
|
48 | 22 27 47 | sylancl | |
49 | 20 48 | rpmulcld | |
50 | 46 49 | rpmulcld | |
51 | 44 50 | rpdivcld | |
52 | 3rp | |
|
53 | rpmulcl | |
|
54 | 7 52 53 | sylancl | |
55 | 54 13 | rpaddcld | |
56 | 51 55 | rpmulcld | |
57 | 56 | rpred | |
58 | 57 | rpefcld | |
59 | 37 58 | rpaddcld | |
60 | 29 59 | rpaddcld | |
61 | 14 60 | eqeltrid | |