Metamath Proof Explorer


Theorem pntlema

Description: Lemma for pnt . Closure for the constants used in the proof. The mammoth expression W is a number large enough to satisfy all the lower bounds needed for Z . For comparison with Equation 10.6.27 of Shapiro, p. 434, Y is x_2, X is x_1, C is the big-O constant in Equation 10.6.29 of Shapiro, p. 435, and W is the unnamed lower bound of "for sufficiently large x" in Equation 10.6.34 of Shapiro, p. 436. (Contributed by Mario Carneiro, 13-Apr-2016)

Ref Expression
Hypotheses pntlem1.r R=a+ψaa
pntlem1.a φA+
pntlem1.b φB+
pntlem1.l φL01
pntlem1.d D=A+1
pntlem1.f F=11DL32BD2
pntlem1.u φU+
pntlem1.u2 φUA
pntlem1.e E=UD
pntlem1.k K=eBE
pntlem1.y φY+1Y
pntlem1.x φX+Y<X
pntlem1.c φC+
pntlem1.w W=Y+4LE2+XK24+e32BUELE2U3+C
Assertion pntlema φW+

Proof

Step Hyp Ref Expression
1 pntlem1.r R=a+ψaa
2 pntlem1.a φA+
3 pntlem1.b φB+
4 pntlem1.l φL01
5 pntlem1.d D=A+1
6 pntlem1.f F=11DL32BD2
7 pntlem1.u φU+
8 pntlem1.u2 φUA
9 pntlem1.e E=UD
10 pntlem1.k K=eBE
11 pntlem1.y φY+1Y
12 pntlem1.x φX+Y<X
13 pntlem1.c φC+
14 pntlem1.w W=Y+4LE2+XK24+e32BUELE2U3+C
15 11 simpld φY+
16 4nn 4
17 nnrp 44+
18 16 17 ax-mp 4+
19 1 2 3 4 5 6 pntlemd φL+D+F+
20 19 simp1d φL+
21 1 2 3 4 5 6 7 8 9 10 pntlemc φE+K+E011<KUE+
22 21 simp1d φE+
23 20 22 rpmulcld φLE+
24 rpdivcl 4+LE+4LE+
25 18 23 24 sylancr φ4LE+
26 15 25 rpaddcld φY+4LE+
27 2z 2
28 rpexpcl Y+4LE+2Y+4LE2+
29 26 27 28 sylancl φY+4LE2+
30 12 simpld φX+
31 21 simp2d φK+
32 rpexpcl K+2K2+
33 31 27 32 sylancl φK2+
34 30 33 rpmulcld φXK2+
35 4z 4
36 rpexpcl XK2+4XK24+
37 34 35 36 sylancl φXK24+
38 3nn0 30
39 2nn 2
40 38 39 decnncl 32
41 nnrp 3232+
42 40 41 ax-mp 32+
43 rpmulcl 32+B+32B+
44 42 3 43 sylancr φ32B+
45 21 simp3d φE011<KUE+
46 45 simp3d φUE+
47 rpexpcl E+2E2+
48 22 27 47 sylancl φE2+
49 20 48 rpmulcld φLE2+
50 46 49 rpmulcld φUELE2+
51 44 50 rpdivcld φ32BUELE2+
52 3rp 3+
53 rpmulcl U+3+U3+
54 7 52 53 sylancl φU3+
55 54 13 rpaddcld φU3+C+
56 51 55 rpmulcld φ32BUELE2U3+C+
57 56 rpred φ32BUELE2U3+C
58 57 rpefcld φe32BUELE2U3+C+
59 37 58 rpaddcld φXK24+e32BUELE2U3+C+
60 29 59 rpaddcld φY+4LE2+XK24+e32BUELE2U3+C+
61 14 60 eqeltrid φW+