Metamath Proof Explorer


Theorem ppiublem1

Description: Lemma for ppiub . (Contributed by Mario Carneiro, 12-Mar-2014)

Ref Expression
Hypotheses ppiublem1.1 N6P4PPmod6N5Pmod615
ppiublem1.2 M0
ppiublem1.3 N=M+1
ppiublem1.4 2M3MM15
Assertion ppiublem1 M6P4PPmod6M5Pmod615

Proof

Step Hyp Ref Expression
1 ppiublem1.1 N6P4PPmod6N5Pmod615
2 ppiublem1.2 M0
3 ppiublem1.3 N=M+1
4 ppiublem1.4 2M3MM15
5 1 simpli N6
6 df-6 6=5+1
7 5 3 6 3brtr3i M+15+1
8 2 nn0rei M
9 5re 5
10 1re 1
11 8 9 10 leadd1i M5M+15+1
12 7 11 mpbir M5
13 6re 6
14 5lt6 5<6
15 9 13 14 ltleii 56
16 8 9 13 letri M556M6
17 12 15 16 mp2an M6
18 2 nn0zi M
19 5nn 5
20 19 nnzi 5
21 eluz2 5MM5M5
22 18 20 12 21 mpbir3an 5M
23 elfzp12 5MPmod6M5Pmod6=MPmod6M+15
24 22 23 ax-mp Pmod6M5Pmod6=MPmod6M+15
25 2nn 2
26 6nn 6
27 prmz PP
28 27 adantr P4PP
29 3z 3
30 2z 2
31 dvdsmul2 32232
32 29 30 31 mp2an 232
33 3t2e6 32=6
34 32 33 breqtri 26
35 dvdsmod 26P262Pmod62P
36 34 35 mpan2 26P2Pmod62P
37 25 26 28 36 mp3an12i P4P2Pmod62P
38 uzid 222
39 30 38 ax-mp 22
40 simpl P4PP
41 dvdsprm 22P2P2=P
42 39 40 41 sylancr P4P2P2=P
43 37 42 bitrd P4P2Pmod62=P
44 simpr P4P4P
45 breq2 2=P424P
46 44 45 syl5ibrcom P4P2=P42
47 2lt4 2<4
48 2re 2
49 4re 4
50 48 49 ltnlei 2<4¬42
51 47 50 mpbi ¬42
52 51 pm2.21i 42Pmod615
53 46 52 syl6 P4P2=PPmod615
54 43 53 sylbid P4P2Pmod6Pmod615
55 breq2 Pmod6=M2Pmod62M
56 55 imbi1d Pmod6=M2Pmod6Pmod6152MPmod615
57 54 56 syl5ibcom P4PPmod6=M2MPmod615
58 57 com3r 2MP4PPmod6=MPmod615
59 3nn 3
60 dvdsmul1 32332
61 29 30 60 mp2an 332
62 61 33 breqtri 36
63 dvdsmod 36P363Pmod63P
64 62 63 mpan2 36P3Pmod63P
65 59 26 28 64 mp3an12i P4P3Pmod63P
66 df-3 3=2+1
67 peano2uz 222+12
68 39 67 ax-mp 2+12
69 66 68 eqeltri 32
70 dvdsprm 32P3P3=P
71 69 40 70 sylancr P4P3P3=P
72 65 71 bitrd P4P3Pmod63=P
73 breq2 3=P434P
74 44 73 syl5ibrcom P4P3=P43
75 3lt4 3<4
76 3re 3
77 76 49 ltnlei 3<4¬43
78 75 77 mpbi ¬43
79 78 pm2.21i 43Pmod615
80 74 79 syl6 P4P3=PPmod615
81 72 80 sylbid P4P3Pmod6Pmod615
82 breq2 Pmod6=M3Pmod63M
83 82 imbi1d Pmod6=M3Pmod6Pmod6153MPmod615
84 81 83 syl5ibcom P4PPmod6=M3MPmod615
85 84 com3r 3MP4PPmod6=MPmod615
86 eleq1a M15Pmod6=MPmod615
87 86 a1d M15P4PPmod6=MPmod615
88 58 85 87 3jaoi 2M3MM15P4PPmod6=MPmod615
89 4 88 ax-mp P4PPmod6=MPmod615
90 3 oveq1i N5=M+15
91 90 eleq2i Pmod6N5Pmod6M+15
92 1 simpri P4PPmod6N5Pmod615
93 91 92 biimtrrid P4PPmod6M+15Pmod615
94 89 93 jaod P4PPmod6=MPmod6M+15Pmod615
95 24 94 biimtrid P4PPmod6M5Pmod615
96 17 95 pm3.2i M6P4PPmod6M5Pmod615