Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic number theory
Number-theoretical functions
ppiublem1
Next ⟩
ppiublem2
Metamath Proof Explorer
Ascii
Unicode
Theorem
ppiublem1
Description:
Lemma for
ppiub
.
(Contributed by
Mario Carneiro
, 12-Mar-2014)
Ref
Expression
Hypotheses
ppiublem1.1
⊢
N
≤
6
∧
P
∈
ℙ
∧
4
≤
P
→
P
mod
6
∈
N
…
5
→
P
mod
6
∈
1
5
ppiublem1.2
⊢
M
∈
ℕ
0
ppiublem1.3
⊢
N
=
M
+
1
ppiublem1.4
⊢
2
∥
M
∨
3
∥
M
∨
M
∈
1
5
Assertion
ppiublem1
⊢
M
≤
6
∧
P
∈
ℙ
∧
4
≤
P
→
P
mod
6
∈
M
…
5
→
P
mod
6
∈
1
5
Proof
Step
Hyp
Ref
Expression
1
ppiublem1.1
⊢
N
≤
6
∧
P
∈
ℙ
∧
4
≤
P
→
P
mod
6
∈
N
…
5
→
P
mod
6
∈
1
5
2
ppiublem1.2
⊢
M
∈
ℕ
0
3
ppiublem1.3
⊢
N
=
M
+
1
4
ppiublem1.4
⊢
2
∥
M
∨
3
∥
M
∨
M
∈
1
5
5
1
simpli
⊢
N
≤
6
6
df-6
⊢
6
=
5
+
1
7
5
3
6
3brtr3i
⊢
M
+
1
≤
5
+
1
8
2
nn0rei
⊢
M
∈
ℝ
9
5re
⊢
5
∈
ℝ
10
1re
⊢
1
∈
ℝ
11
8
9
10
leadd1i
⊢
M
≤
5
↔
M
+
1
≤
5
+
1
12
7
11
mpbir
⊢
M
≤
5
13
6re
⊢
6
∈
ℝ
14
5lt6
⊢
5
<
6
15
9
13
14
ltleii
⊢
5
≤
6
16
8
9
13
letri
⊢
M
≤
5
∧
5
≤
6
→
M
≤
6
17
12
15
16
mp2an
⊢
M
≤
6
18
2
nn0zi
⊢
M
∈
ℤ
19
5nn
⊢
5
∈
ℕ
20
19
nnzi
⊢
5
∈
ℤ
21
eluz2
⊢
5
∈
ℤ
≥
M
↔
M
∈
ℤ
∧
5
∈
ℤ
∧
M
≤
5
22
18
20
12
21
mpbir3an
⊢
5
∈
ℤ
≥
M
23
elfzp12
⊢
5
∈
ℤ
≥
M
→
P
mod
6
∈
M
…
5
↔
P
mod
6
=
M
∨
P
mod
6
∈
M
+
1
…
5
24
22
23
ax-mp
⊢
P
mod
6
∈
M
…
5
↔
P
mod
6
=
M
∨
P
mod
6
∈
M
+
1
…
5
25
2nn
⊢
2
∈
ℕ
26
6nn
⊢
6
∈
ℕ
27
prmz
⊢
P
∈
ℙ
→
P
∈
ℤ
28
27
adantr
⊢
P
∈
ℙ
∧
4
≤
P
→
P
∈
ℤ
29
3z
⊢
3
∈
ℤ
30
2z
⊢
2
∈
ℤ
31
dvdsmul2
⊢
3
∈
ℤ
∧
2
∈
ℤ
→
2
∥
3
⋅
2
32
29
30
31
mp2an
⊢
2
∥
3
⋅
2
33
3t2e6
⊢
3
⋅
2
=
6
34
32
33
breqtri
⊢
2
∥
6
35
dvdsmod
⊢
2
∈
ℕ
∧
6
∈
ℕ
∧
P
∈
ℤ
∧
2
∥
6
→
2
∥
P
mod
6
↔
2
∥
P
36
34
35
mpan2
⊢
2
∈
ℕ
∧
6
∈
ℕ
∧
P
∈
ℤ
→
2
∥
P
mod
6
↔
2
∥
P
37
25
26
28
36
mp3an12i
⊢
P
∈
ℙ
∧
4
≤
P
→
2
∥
P
mod
6
↔
2
∥
P
38
uzid
⊢
2
∈
ℤ
→
2
∈
ℤ
≥
2
39
30
38
ax-mp
⊢
2
∈
ℤ
≥
2
40
simpl
⊢
P
∈
ℙ
∧
4
≤
P
→
P
∈
ℙ
41
dvdsprm
⊢
2
∈
ℤ
≥
2
∧
P
∈
ℙ
→
2
∥
P
↔
2
=
P
42
39
40
41
sylancr
⊢
P
∈
ℙ
∧
4
≤
P
→
2
∥
P
↔
2
=
P
43
37
42
bitrd
⊢
P
∈
ℙ
∧
4
≤
P
→
2
∥
P
mod
6
↔
2
=
P
44
simpr
⊢
P
∈
ℙ
∧
4
≤
P
→
4
≤
P
45
breq2
⊢
2
=
P
→
4
≤
2
↔
4
≤
P
46
44
45
syl5ibrcom
⊢
P
∈
ℙ
∧
4
≤
P
→
2
=
P
→
4
≤
2
47
2lt4
⊢
2
<
4
48
2re
⊢
2
∈
ℝ
49
4re
⊢
4
∈
ℝ
50
48
49
ltnlei
⊢
2
<
4
↔
¬
4
≤
2
51
47
50
mpbi
⊢
¬
4
≤
2
52
51
pm2.21i
⊢
4
≤
2
→
P
mod
6
∈
1
5
53
46
52
syl6
⊢
P
∈
ℙ
∧
4
≤
P
→
2
=
P
→
P
mod
6
∈
1
5
54
43
53
sylbid
⊢
P
∈
ℙ
∧
4
≤
P
→
2
∥
P
mod
6
→
P
mod
6
∈
1
5
55
breq2
⊢
P
mod
6
=
M
→
2
∥
P
mod
6
↔
2
∥
M
56
55
imbi1d
⊢
P
mod
6
=
M
→
2
∥
P
mod
6
→
P
mod
6
∈
1
5
↔
2
∥
M
→
P
mod
6
∈
1
5
57
54
56
syl5ibcom
⊢
P
∈
ℙ
∧
4
≤
P
→
P
mod
6
=
M
→
2
∥
M
→
P
mod
6
∈
1
5
58
57
com3r
⊢
2
∥
M
→
P
∈
ℙ
∧
4
≤
P
→
P
mod
6
=
M
→
P
mod
6
∈
1
5
59
3nn
⊢
3
∈
ℕ
60
dvdsmul1
⊢
3
∈
ℤ
∧
2
∈
ℤ
→
3
∥
3
⋅
2
61
29
30
60
mp2an
⊢
3
∥
3
⋅
2
62
61
33
breqtri
⊢
3
∥
6
63
dvdsmod
⊢
3
∈
ℕ
∧
6
∈
ℕ
∧
P
∈
ℤ
∧
3
∥
6
→
3
∥
P
mod
6
↔
3
∥
P
64
62
63
mpan2
⊢
3
∈
ℕ
∧
6
∈
ℕ
∧
P
∈
ℤ
→
3
∥
P
mod
6
↔
3
∥
P
65
59
26
28
64
mp3an12i
⊢
P
∈
ℙ
∧
4
≤
P
→
3
∥
P
mod
6
↔
3
∥
P
66
df-3
⊢
3
=
2
+
1
67
peano2uz
⊢
2
∈
ℤ
≥
2
→
2
+
1
∈
ℤ
≥
2
68
39
67
ax-mp
⊢
2
+
1
∈
ℤ
≥
2
69
66
68
eqeltri
⊢
3
∈
ℤ
≥
2
70
dvdsprm
⊢
3
∈
ℤ
≥
2
∧
P
∈
ℙ
→
3
∥
P
↔
3
=
P
71
69
40
70
sylancr
⊢
P
∈
ℙ
∧
4
≤
P
→
3
∥
P
↔
3
=
P
72
65
71
bitrd
⊢
P
∈
ℙ
∧
4
≤
P
→
3
∥
P
mod
6
↔
3
=
P
73
breq2
⊢
3
=
P
→
4
≤
3
↔
4
≤
P
74
44
73
syl5ibrcom
⊢
P
∈
ℙ
∧
4
≤
P
→
3
=
P
→
4
≤
3
75
3lt4
⊢
3
<
4
76
3re
⊢
3
∈
ℝ
77
76
49
ltnlei
⊢
3
<
4
↔
¬
4
≤
3
78
75
77
mpbi
⊢
¬
4
≤
3
79
78
pm2.21i
⊢
4
≤
3
→
P
mod
6
∈
1
5
80
74
79
syl6
⊢
P
∈
ℙ
∧
4
≤
P
→
3
=
P
→
P
mod
6
∈
1
5
81
72
80
sylbid
⊢
P
∈
ℙ
∧
4
≤
P
→
3
∥
P
mod
6
→
P
mod
6
∈
1
5
82
breq2
⊢
P
mod
6
=
M
→
3
∥
P
mod
6
↔
3
∥
M
83
82
imbi1d
⊢
P
mod
6
=
M
→
3
∥
P
mod
6
→
P
mod
6
∈
1
5
↔
3
∥
M
→
P
mod
6
∈
1
5
84
81
83
syl5ibcom
⊢
P
∈
ℙ
∧
4
≤
P
→
P
mod
6
=
M
→
3
∥
M
→
P
mod
6
∈
1
5
85
84
com3r
⊢
3
∥
M
→
P
∈
ℙ
∧
4
≤
P
→
P
mod
6
=
M
→
P
mod
6
∈
1
5
86
eleq1a
⊢
M
∈
1
5
→
P
mod
6
=
M
→
P
mod
6
∈
1
5
87
86
a1d
⊢
M
∈
1
5
→
P
∈
ℙ
∧
4
≤
P
→
P
mod
6
=
M
→
P
mod
6
∈
1
5
88
58
85
87
3jaoi
⊢
2
∥
M
∨
3
∥
M
∨
M
∈
1
5
→
P
∈
ℙ
∧
4
≤
P
→
P
mod
6
=
M
→
P
mod
6
∈
1
5
89
4
88
ax-mp
⊢
P
∈
ℙ
∧
4
≤
P
→
P
mod
6
=
M
→
P
mod
6
∈
1
5
90
3
oveq1i
⊢
N
…
5
=
M
+
1
…
5
91
90
eleq2i
⊢
P
mod
6
∈
N
…
5
↔
P
mod
6
∈
M
+
1
…
5
92
1
simpri
⊢
P
∈
ℙ
∧
4
≤
P
→
P
mod
6
∈
N
…
5
→
P
mod
6
∈
1
5
93
91
92
biimtrrid
⊢
P
∈
ℙ
∧
4
≤
P
→
P
mod
6
∈
M
+
1
…
5
→
P
mod
6
∈
1
5
94
89
93
jaod
⊢
P
∈
ℙ
∧
4
≤
P
→
P
mod
6
=
M
∨
P
mod
6
∈
M
+
1
…
5
→
P
mod
6
∈
1
5
95
24
94
biimtrid
⊢
P
∈
ℙ
∧
4
≤
P
→
P
mod
6
∈
M
…
5
→
P
mod
6
∈
1
5
96
17
95
pm3.2i
⊢
M
≤
6
∧
P
∈
ℙ
∧
4
≤
P
→
P
mod
6
∈
M
…
5
→
P
mod
6
∈
1
5