Description: The particular point topology is generated by a basis consisting of pairs { x , P } for each x e. A . (Contributed by Mario Carneiro, 3-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | pptbas | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ppttop | |
|
2 | topontop | |
|
3 | 1 2 | syl | |
4 | eleq2 | |
|
5 | eqeq1 | |
|
6 | 4 5 | orbi12d | |
7 | simpr | |
|
8 | simplr | |
|
9 | 7 8 | prssd | |
10 | prex | |
|
11 | 10 | elpw | |
12 | 9 11 | sylibr | |
13 | prid2g | |
|
14 | 13 | ad2antlr | |
15 | 14 | orcd | |
16 | 6 12 15 | elrabd | |
17 | 16 | fmpttd | |
18 | 17 | frnd | |
19 | eleq2 | |
|
20 | eqeq1 | |
|
21 | 19 20 | orbi12d | |
22 | 21 | elrab | |
23 | elpwi | |
|
24 | 23 | ad2antrl | |
25 | 24 | sselda | |
26 | prid1g | |
|
27 | 26 | adantl | |
28 | simpr | |
|
29 | n0i | |
|
30 | 29 | adantl | |
31 | simplrr | |
|
32 | 31 | ord | |
33 | 30 32 | mt3d | |
34 | 28 33 | prssd | |
35 | preq1 | |
|
36 | 35 | eleq2d | |
37 | 35 | sseq1d | |
38 | 36 37 | anbi12d | |
39 | 38 | rspcev | |
40 | 25 27 34 39 | syl12anc | |
41 | 10 | rgenw | |
42 | eqid | |
|
43 | eleq2 | |
|
44 | sseq1 | |
|
45 | 43 44 | anbi12d | |
46 | 42 45 | rexrnmptw | |
47 | 41 46 | ax-mp | |
48 | 40 47 | sylibr | |
49 | 48 | ralrimiva | |
50 | 49 | ex | |
51 | 22 50 | biimtrid | |
52 | 51 | ralrimiv | |
53 | basgen2 | |
|
54 | 3 18 52 53 | syl3anc | |
55 | eleq2 | |
|
56 | eqeq1 | |
|
57 | 55 56 | orbi12d | |
58 | 57 | cbvrabv | |
59 | 54 58 | eqtr2di | |