Metamath Proof Explorer


Theorem pptbas

Description: The particular point topology is generated by a basis consisting of pairs { x , P } for each x e. A . (Contributed by Mario Carneiro, 3-Sep-2015)

Ref Expression
Assertion pptbas AVPAx𝒫A|Pxx==topGenranxAxP

Proof

Step Hyp Ref Expression
1 ppttop AVPAy𝒫A|Pyy=TopOnA
2 topontop y𝒫A|Pyy=TopOnAy𝒫A|Pyy=Top
3 1 2 syl AVPAy𝒫A|Pyy=Top
4 eleq2 y=xPPyPxP
5 eqeq1 y=xPy=xP=
6 4 5 orbi12d y=xPPyy=PxPxP=
7 simpr AVPAxAxA
8 simplr AVPAxAPA
9 7 8 prssd AVPAxAxPA
10 prex xPV
11 10 elpw xP𝒫AxPA
12 9 11 sylibr AVPAxAxP𝒫A
13 prid2g PAPxP
14 13 ad2antlr AVPAxAPxP
15 14 orcd AVPAxAPxPxP=
16 6 12 15 elrabd AVPAxAxPy𝒫A|Pyy=
17 16 fmpttd AVPAxAxP:Ay𝒫A|Pyy=
18 17 frnd AVPAranxAxPy𝒫A|Pyy=
19 eleq2 y=zPyPz
20 eqeq1 y=zy=z=
21 19 20 orbi12d y=zPyy=Pzz=
22 21 elrab zy𝒫A|Pyy=z𝒫APzz=
23 elpwi z𝒫AzA
24 23 ad2antrl AVPAz𝒫APzz=zA
25 24 sselda AVPAz𝒫APzz=wzwA
26 prid1g wzwwP
27 26 adantl AVPAz𝒫APzz=wzwwP
28 simpr AVPAz𝒫APzz=wzwz
29 n0i wz¬z=
30 29 adantl AVPAz𝒫APzz=wz¬z=
31 simplrr AVPAz𝒫APzz=wzPzz=
32 31 ord AVPAz𝒫APzz=wz¬Pzz=
33 30 32 mt3d AVPAz𝒫APzz=wzPz
34 28 33 prssd AVPAz𝒫APzz=wzwPz
35 preq1 x=wxP=wP
36 35 eleq2d x=wwxPwwP
37 35 sseq1d x=wxPzwPz
38 36 37 anbi12d x=wwxPxPzwwPwPz
39 38 rspcev wAwwPwPzxAwxPxPz
40 25 27 34 39 syl12anc AVPAz𝒫APzz=wzxAwxPxPz
41 10 rgenw xAxPV
42 eqid xAxP=xAxP
43 eleq2 v=xPwvwxP
44 sseq1 v=xPvzxPz
45 43 44 anbi12d v=xPwvvzwxPxPz
46 42 45 rexrnmptw xAxPVvranxAxPwvvzxAwxPxPz
47 41 46 ax-mp vranxAxPwvvzxAwxPxPz
48 40 47 sylibr AVPAz𝒫APzz=wzvranxAxPwvvz
49 48 ralrimiva AVPAz𝒫APzz=wzvranxAxPwvvz
50 49 ex AVPAz𝒫APzz=wzvranxAxPwvvz
51 22 50 biimtrid AVPAzy𝒫A|Pyy=wzvranxAxPwvvz
52 51 ralrimiv AVPAzy𝒫A|Pyy=wzvranxAxPwvvz
53 basgen2 y𝒫A|Pyy=TopranxAxPy𝒫A|Pyy=zy𝒫A|Pyy=wzvranxAxPwvvztopGenranxAxP=y𝒫A|Pyy=
54 3 18 52 53 syl3anc AVPAtopGenranxAxP=y𝒫A|Pyy=
55 eleq2 y=xPyPx
56 eqeq1 y=xy=x=
57 55 56 orbi12d y=xPyy=Pxx=
58 57 cbvrabv y𝒫A|Pyy==x𝒫A|Pxx=
59 54 58 eqtr2di AVPAx𝒫A|Pxx==topGenranxAxP