Metamath Proof Explorer


Theorem prdsvsca

Description: Scalar multiplication in a structure product. (Contributed by Stefan O'Rear, 5-Jan-2015) (Revised by Mario Carneiro, 15-Aug-2015) (Revised by Thierry Arnoux, 16-Jun-2019) (Revised by Zhi Wang, 18-Aug-2024)

Ref Expression
Hypotheses prdsbas.p P=S𝑠R
prdsbas.s φSV
prdsbas.r φRW
prdsbas.b B=BaseP
prdsbas.i φdomR=I
prdsvsca.k K=BaseS
prdsvsca.m ·˙=P
Assertion prdsvsca φ·˙=fK,gBxIfRxgx

Proof

Step Hyp Ref Expression
1 prdsbas.p P=S𝑠R
2 prdsbas.s φSV
3 prdsbas.r φRW
4 prdsbas.b B=BaseP
5 prdsbas.i φdomR=I
6 prdsvsca.k K=BaseS
7 prdsvsca.m ·˙=P
8 1 2 3 4 5 prdsbas φB=xIBaseRx
9 eqid +P=+P
10 1 2 3 4 5 9 prdsplusg φ+P=fB,gBxIfx+Rxgx
11 eqid P=P
12 1 2 3 4 5 11 prdsmulr φP=fB,gBxIfxRxgx
13 eqidd φfK,gBxIfRxgx=fK,gBxIfRxgx
14 eqidd φfB,gBSxIfx𝑖Rxgx=fB,gBSxIfx𝑖Rxgx
15 eqidd φ𝑡TopOpenR=𝑡TopOpenR
16 eqidd φfg|fgBxIfxRxgx=fg|fgBxIfxRxgx
17 eqidd φfB,gBsupranxIfxdistRxgx0*<=fB,gBsupranxIfxdistRxgx0*<
18 eqidd φfB,gBxIfxHomRxgx=fB,gBxIfxHomRxgx
19 eqidd φaB×B,cBd2ndafB,gBxIfxHomRxgxc,efB,gBxIfxHomRxgxaxIdx1stax2ndaxcompRxcxex=aB×B,cBd2ndafB,gBxIfxHomRxgxc,efB,gBxIfxHomRxgxaxIdx1stax2ndaxcompRxcxex
20 1 6 5 8 10 12 13 14 15 16 17 18 19 2 3 prdsval φP=BasendxB+ndx+PndxPScalarndxSndxfK,gBxIfRxgx𝑖ndxfB,gBSxIfx𝑖RxgxTopSetndx𝑡TopOpenRndxfg|fgBxIfxRxgxdistndxfB,gBsupranxIfxdistRxgx0*<HomndxfB,gBxIfxHomRxgxcompndxaB×B,cBd2ndafB,gBxIfxHomRxgxc,efB,gBxIfxHomRxgxaxIdx1stax2ndaxcompRxcxex
21 vscaid 𝑠=Slotndx
22 ovssunirn fRxgxranRx
23 21 strfvss RxranRx
24 fvssunirn RxranR
25 rnss RxranRranRxranranR
26 uniss ranRxranranRranRxranranR
27 24 25 26 mp2b ranRxranranR
28 23 27 sstri RxranranR
29 rnss RxranranRranRxranranranR
30 uniss ranRxranranranRranRxranranranR
31 28 29 30 mp2b ranRxranranranR
32 22 31 sstri fRxgxranranranR
33 ovex fRxgxV
34 33 elpw fRxgx𝒫ranranranRfRxgxranranranR
35 32 34 mpbir fRxgx𝒫ranranranR
36 35 a1i φxIfRxgx𝒫ranranranR
37 36 fmpttd φxIfRxgx:I𝒫ranranranR
38 rnexg RWranRV
39 uniexg ranRVranRV
40 3 38 39 3syl φranRV
41 rnexg ranRVranranRV
42 uniexg ranranRVranranRV
43 40 41 42 3syl φranranRV
44 rnexg ranranRVranranranRV
45 uniexg ranranranRVranranranRV
46 pwexg ranranranRV𝒫ranranranRV
47 43 44 45 46 4syl φ𝒫ranranranRV
48 3 dmexd φdomRV
49 5 48 eqeltrrd φIV
50 47 49 elmapd φxIfRxgx𝒫ranranranRIxIfRxgx:I𝒫ranranranR
51 37 50 mpbird φxIfRxgx𝒫ranranranRI
52 51 ralrimivw φgBxIfRxgx𝒫ranranranRI
53 52 ralrimivw φfKgBxIfRxgx𝒫ranranranRI
54 eqid fK,gBxIfRxgx=fK,gBxIfRxgx
55 54 fmpo fKgBxIfRxgx𝒫ranranranRIfK,gBxIfRxgx:K×B𝒫ranranranRI
56 53 55 sylib φfK,gBxIfRxgx:K×B𝒫ranranranRI
57 6 fvexi KV
58 4 fvexi BV
59 57 58 xpex K×BV
60 ovex 𝒫ranranranRIV
61 fex2 fK,gBxIfRxgx:K×B𝒫ranranranRIK×BV𝒫ranranranRIVfK,gBxIfRxgxV
62 59 60 61 mp3an23 fK,gBxIfRxgx:K×B𝒫ranranranRIfK,gBxIfRxgxV
63 56 62 syl φfK,gBxIfRxgxV
64 snsstp2 ndxfK,gBxIfRxgxScalarndxSndxfK,gBxIfRxgx𝑖ndxfB,gBSxIfx𝑖Rxgx
65 ssun2 ScalarndxSndxfK,gBxIfRxgx𝑖ndxfB,gBSxIfx𝑖RxgxBasendxB+ndx+PndxPScalarndxSndxfK,gBxIfRxgx𝑖ndxfB,gBSxIfx𝑖Rxgx
66 64 65 sstri ndxfK,gBxIfRxgxBasendxB+ndx+PndxPScalarndxSndxfK,gBxIfRxgx𝑖ndxfB,gBSxIfx𝑖Rxgx
67 ssun1 BasendxB+ndx+PndxPScalarndxSndxfK,gBxIfRxgx𝑖ndxfB,gBSxIfx𝑖RxgxBasendxB+ndx+PndxPScalarndxSndxfK,gBxIfRxgx𝑖ndxfB,gBSxIfx𝑖RxgxTopSetndx𝑡TopOpenRndxfg|fgBxIfxRxgxdistndxfB,gBsupranxIfxdistRxgx0*<HomndxfB,gBxIfxHomRxgxcompndxaB×B,cBd2ndafB,gBxIfxHomRxgxc,efB,gBxIfxHomRxgxaxIdx1stax2ndaxcompRxcxex
68 66 67 sstri ndxfK,gBxIfRxgxBasendxB+ndx+PndxPScalarndxSndxfK,gBxIfRxgx𝑖ndxfB,gBSxIfx𝑖RxgxTopSetndx𝑡TopOpenRndxfg|fgBxIfxRxgxdistndxfB,gBsupranxIfxdistRxgx0*<HomndxfB,gBxIfxHomRxgxcompndxaB×B,cBd2ndafB,gBxIfxHomRxgxc,efB,gBxIfxHomRxgxaxIdx1stax2ndaxcompRxcxex
69 20 7 21 63 68 prdsbaslem φ·˙=fK,gBxIfRxgx