Metamath Proof Explorer


Theorem preimaleiinlt

Description: A preimage of a left-open, right-closed, unbounded below interval, expressed as an indexed intersection of preimages of open, unbound below intervals. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses preimaleiinlt.x xφ
preimaleiinlt.b φxAB*
preimaleiinlt.c φC
Assertion preimaleiinlt φxA|BC=nxA|B<C+1n

Proof

Step Hyp Ref Expression
1 preimaleiinlt.x xφ
2 preimaleiinlt.b φxAB*
3 preimaleiinlt.c φC
4 simpllr φxABCnxA
5 2 ad2antrr φxABCnB*
6 3 ad3antrrr φxABCnC
7 6 rexrd φxABCnC*
8 3 adantr φnC
9 nnrecre n1n
10 9 adantl φn1n
11 8 10 readdcld φnC+1n
12 11 ad4ant14 φxABCnC+1n
13 12 rexrd φxABCnC+1n*
14 simplr φxABCnBC
15 nnrp nn+
16 rpreccl n+1n+
17 15 16 syl n1n+
18 17 adantl φn1n+
19 8 18 ltaddrpd φnC<C+1n
20 19 ad4ant14 φxABCnC<C+1n
21 5 7 13 14 20 xrlelttrd φxABCnB<C+1n
22 4 21 jca φxABCnxAB<C+1n
23 rabid xxA|B<C+1nxAB<C+1n
24 22 23 sylibr φxABCnxxA|B<C+1n
25 24 ralrimiva φxABCnxxA|B<C+1n
26 vex xV
27 eliin xVxnxA|B<C+1nnxxA|B<C+1n
28 26 27 ax-mp xnxA|B<C+1nnxxA|B<C+1n
29 25 28 sylibr φxABCxnxA|B<C+1n
30 29 ex φxABCxnxA|B<C+1n
31 30 ex φxABCxnxA|B<C+1n
32 1 31 ralrimi φxABCxnxA|B<C+1n
33 nfcv _x
34 nfrab1 _xxA|B<C+1n
35 33 34 nfiin _xnxA|B<C+1n
36 35 rabssf xA|BCnxA|B<C+1nxABCxnxA|B<C+1n
37 32 36 sylibr φxA|BCnxA|B<C+1n
38 nnn0
39 38 a1i φ
40 iinrab nxA|B<C+1n=xA|nB<C+1n
41 39 40 syl φnxA|B<C+1n=xA|nB<C+1n
42 2 ad2antrr φxAnB<C+1nB*
43 11 ad4ant13 φxAnB<C+1nC+1n
44 43 rexrd φxAnB<C+1nC+1n*
45 simpr φxAnB<C+1nB<C+1n
46 42 44 45 xrltled φxAnB<C+1nBC+1n
47 46 ex φxAnB<C+1nBC+1n
48 47 ralimdva φxAnB<C+1nnBC+1n
49 48 imp φxAnB<C+1nnBC+1n
50 nfv nφxA
51 nfra1 nnB<C+1n
52 50 51 nfan nφxAnB<C+1n
53 2 adantr φxAnB<C+1nB*
54 3 ad2antrr φxAnB<C+1nC
55 52 53 54 xrralrecnnle φxAnB<C+1nBCnBC+1n
56 49 55 mpbird φxAnB<C+1nBC
57 56 ex φxAnB<C+1nBC
58 57 ex φxAnB<C+1nBC
59 1 58 ralrimi φxAnB<C+1nBC
60 ss2rab xA|nB<C+1nxA|BCxAnB<C+1nBC
61 59 60 sylibr φxA|nB<C+1nxA|BC
62 41 61 eqsstrd φnxA|B<C+1nxA|BC
63 37 62 eqssd φxA|BC=nxA|B<C+1n