Description: The relation in PrjSp is symmetric. (Contributed by Steven Nguyen, 1-May-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | prjsprel.1 | |
|
prjspertr.b | |
||
prjspertr.s | |
||
prjspertr.x | |
||
prjspertr.k | |
||
Assertion | prjspersym | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prjsprel.1 | |
|
2 | prjspertr.b | |
|
3 | prjspertr.s | |
|
4 | prjspertr.x | |
|
5 | prjspertr.k | |
|
6 | simpllr | |
|
7 | 1 | prjsprel | |
8 | pm3.22 | |
|
9 | 8 | adantr | |
10 | 7 9 | sylbi | |
11 | 6 10 | syl | |
12 | simplll | |
|
13 | 3 | lvecdrng | |
14 | 12 13 | syl | |
15 | simplr | |
|
16 | simpll | |
|
17 | 7 16 | sylbi | |
18 | eldifsni | |
|
19 | 18 2 | eleq2s | |
20 | 6 17 19 | 3syl | |
21 | simplr | |
|
22 | simpr | |
|
23 | 22 | oveq1d | |
24 | lveclmod | |
|
25 | 24 | ad4antr | |
26 | simplr | |
|
27 | 7 26 | sylbi | |
28 | eldifi | |
|
29 | 28 2 | eleq2s | |
30 | 6 27 29 | 3syl | |
31 | 30 | adantr | |
32 | eqid | |
|
33 | eqid | |
|
34 | eqid | |
|
35 | 32 3 4 33 34 | lmod0vs | |
36 | 25 31 35 | syl2anc | |
37 | 21 23 36 | 3eqtrd | |
38 | 20 37 | mteqand | |
39 | eqid | |
|
40 | 5 33 39 | drnginvrcl | |
41 | 14 15 38 40 | syl3anc | |
42 | oveq1 | |
|
43 | 42 | eqeq2d | |
44 | 43 | adantl | |
45 | simpr | |
|
46 | nelsn | |
|
47 | 38 46 | syl | |
48 | 15 47 | eldifd | |
49 | eldifi | |
|
50 | 49 2 | eleq2s | |
51 | 6 17 50 | 3syl | |
52 | 32 4 3 5 33 39 12 48 51 30 | lvecinv | |
53 | 45 52 | mpbid | |
54 | 41 44 53 | rspcedvd | |
55 | 1 | prjsprel | |
56 | 11 54 55 | sylanbrc | |
57 | simpr | |
|
58 | 7 57 | sylbi | |
59 | 58 | adantl | |
60 | 56 59 | r19.29a | |