Metamath Proof Explorer


Theorem prmdvdsbc

Description: Condition for a prime number to divide a binomial coefficient. (Contributed by Thierry Arnoux, 17-Sep-2023)

Ref Expression
Assertion prmdvdsbc PN1P1P(PN)

Proof

Step Hyp Ref Expression
1 eqid P!PN!N!=P!PN!N!
2 simpl PN1P1P
3 prmnn PP
4 3 nnzd PP
5 1nn0 10
6 eluzmn P10PP1
7 4 5 6 sylancl PPP1
8 fzss2 PP11P11P
9 7 8 syl P1P11P
10 fz1ssfz0 1P0P
11 9 10 sstrdi P1P10P
12 11 sselda PN1P1N0P
13 bcval2 N0P(PN)=P!PN!N!
14 12 13 syl PN1P1(PN)=P!PN!N!
15 3 nnnn0d PP0
16 15 adantr PN1P1P0
17 elfzelz N1P1N
18 17 adantl PN1P1N
19 bccl P0N(PN)0
20 16 18 19 syl2anc PN1P1(PN)0
21 20 nn0zd PN1P1(PN)
22 14 21 eqeltrrd PN1P1P!PN!N!
23 elfznn N1P1N
24 23 adantl PN1P1N
25 24 nnnn0d PN1P1N0
26 1zzd PN1P11
27 4 adantr PN1P1P
28 simpr PN1P1N1P1
29 elfzm11 1PN1P1N1NN<P
30 29 biimpa 1PN1P1N1NN<P
31 30 simp3d 1PN1P1N<P
32 26 27 28 31 syl21anc PN1P1N<P
33 ltsubnn0 P0N0N<PPN0
34 33 imp P0N0N<PPN0
35 16 25 32 34 syl21anc PN1P1PN0
36 35 faccld PN1P1PN!
37 36 nnzd PN1P1PN!
38 25 faccld PN1P1N!
39 38 nnzd PN1P1N!
40 37 39 zmulcld PN1P1PN!N!
41 37 zcnd PN1P1PN!
42 39 zcnd PN1P1N!
43 facne0 PN0PN!0
44 35 43 syl PN1P1PN!0
45 facne0 N0N!0
46 25 45 syl PN1P1N!0
47 41 42 44 46 mulne0d PN1P1PN!N!0
48 uzid PPP
49 4 48 syl PPP
50 dvdsfac PPPPP!
51 3 49 50 syl2anc PPP!
52 51 adantr PN1P1PP!
53 16 nn0red PN1P1P
54 24 nnrpd PN1P1N+
55 53 54 ltsubrpd PN1P1PN<P
56 prmndvdsfaclt PPN0PN<P¬PPN!
57 56 imp PPN0PN<P¬PPN!
58 2 35 55 57 syl21anc PN1P1¬PPN!
59 prmndvdsfaclt PN0N<P¬PN!
60 59 imp PN0N<P¬PN!
61 2 25 32 60 syl21anc PN1P1¬PN!
62 ioran ¬PPN!PN!¬PPN!¬PN!
63 euclemma PPN!N!PPN!N!PPN!PN!
64 63 biimpd PPN!N!PPN!N!PPN!PN!
65 64 con3d PPN!N!¬PPN!PN!¬PPN!N!
66 62 65 biimtrrid PPN!N!¬PPN!¬PN!¬PPN!N!
67 66 imp PPN!N!¬PPN!¬PN!¬PPN!N!
68 2 37 39 58 61 67 syl32anc PN1P1¬PPN!N!
69 1 2 22 40 47 52 68 dvdszzq PN1P1PP!PN!N!
70 69 14 breqtrrd PN1P1P(PN)