Metamath Proof Explorer


Theorem prmdvdsprmo

Description: The primorial of a number is divisible by each prime less then or equal to the number. (Contributed by AV, 15-Aug-2020) (Revised by AV, 28-Aug-2020)

Ref Expression
Assertion prmdvdsprmo NppNp#pN

Proof

Step Hyp Ref Expression
1 fzfi 1NFin
2 diffi 1NFin1NpFin
3 1 2 mp1i NppN1NpFin
4 eldifi k1Npk1N
5 elfzelz k1Nk
6 4 5 syl k1Npk
7 1zzd k1Np1
8 6 7 ifcld k1Npifkk1
9 8 adantl NppNk1Npifkk1
10 3 9 fprodzcl NppNk1Npifkk1
11 prmz pp
12 11 adantl Npp
13 12 adantr NppNp
14 dvdsmul2 k1Npifkk1ppk1Npifkk1p
15 10 13 14 syl2anc NppNpk1Npifkk1p
16 nnnn0 NN0
17 prmoval N0#pN=k=1Nifkk1
18 16 17 syl N#pN=k=1Nifkk1
19 18 ad2antrr NppN#pN=k=1Nifkk1
20 19 breq2d NppNp#pNpk=1Nifkk1
21 neldifsnd NppN¬p1Np
22 disjsn 1Npp=¬p1Np
23 21 22 sylibr NppN1Npp=
24 prmnn pp
25 24 adantl Npp
26 25 anim1i NppNppN
27 nnz NN
28 fznn Np1NppN
29 27 28 syl Np1NppN
30 29 ad2antrr NppNp1NppN
31 26 30 mpbird NppNp1N
32 difsnid p1N1Npp=1N
33 32 eqcomd p1N1N=1Npp
34 31 33 syl NppN1N=1Npp
35 fzfid NppN1NFin
36 1zzd k1N1
37 5 36 ifcld k1Nifkk1
38 37 zcnd k1Nifkk1
39 38 adantl NppNk1Nifkk1
40 23 34 35 39 fprodsplit NppNk=1Nifkk1=k1Npifkk1kpifkk1
41 simplr NppNp
42 25 adantr NppNp
43 42 nncnd NppNp
44 1cnd NppN1
45 43 44 ifcld NppNifpp1
46 eleq1w k=pkp
47 id k=pk=p
48 46 47 ifbieq1d k=pifkk1=ifpp1
49 48 prodsn pifpp1kpifkk1=ifpp1
50 41 45 49 syl2anc NppNkpifkk1=ifpp1
51 simpr Npp
52 51 iftrued Npifpp1=p
53 52 adantr NppNifpp1=p
54 50 53 eqtrd NppNkpifkk1=p
55 54 oveq2d NppNk1Npifkk1kpifkk1=k1Npifkk1p
56 40 55 eqtrd NppNk=1Nifkk1=k1Npifkk1p
57 56 breq2d NppNpk=1Nifkk1pk1Npifkk1p
58 20 57 bitrd NppNp#pNpk1Npifkk1p
59 15 58 mpbird NppNp#pN
60 59 ex NppNp#pN
61 60 ralrimiva NppNp#pN