Metamath Proof Explorer


Theorem prodmolem2

Description: Lemma for prodmo . (Contributed by Scott Fenton, 4-Dec-2017)

Ref Expression
Hypotheses prodmo.1 F=kifkAB1
prodmo.2 φkAB
prodmo.3 G=jfj/kB
Assertion prodmolem2 φmAmnmyy0seqn×Fyseqm×Fxmff:1m1-1 ontoAz=seq1×Gmx=z

Proof

Step Hyp Ref Expression
1 prodmo.1 F=kifkAB1
2 prodmo.2 φkAB
3 prodmo.3 G=jfj/kB
4 3simpb Amnmyy0seqn×Fyseqm×FxAmseqm×Fx
5 4 reximi mAmnmyy0seqn×Fyseqm×FxmAmseqm×Fx
6 fveq2 m=wm=w
7 6 sseq2d m=wAmAw
8 seqeq1 m=wseqm×F=seqw×F
9 8 breq1d m=wseqm×Fxseqw×Fx
10 7 9 anbi12d m=wAmseqm×FxAwseqw×Fx
11 10 cbvrexvw mAmseqm×FxwAwseqw×Fx
12 reeanv wmAwseqw×Fxff:1m1-1 ontoAz=seq1×GmwAwseqw×Fxmff:1m1-1 ontoAz=seq1×Gm
13 simprlr φwmAwseqw×Fxf:1m1-1 ontoAseqw×Fx
14 simprll φwmAwseqw×Fxf:1m1-1 ontoAAw
15 uzssz w
16 zssre
17 15 16 sstri w
18 14 17 sstrdi φwmAwseqw×Fxf:1m1-1 ontoAA
19 ltso <Or
20 soss A<Or<OrA
21 18 19 20 mpisyl φwmAwseqw×Fxf:1m1-1 ontoA<OrA
22 fzfi 1mFin
23 ovex 1mV
24 23 f1oen f:1m1-1 ontoA1mA
25 24 ad2antll φwmAwseqw×Fxf:1m1-1 ontoA1mA
26 25 ensymd φwmAwseqw×Fxf:1m1-1 ontoAA1m
27 enfii 1mFinA1mAFin
28 22 26 27 sylancr φwmAwseqw×Fxf:1m1-1 ontoAAFin
29 fz1iso <OrAAFinggIsom<,<1AA
30 21 28 29 syl2anc φwmAwseqw×Fxf:1m1-1 ontoAggIsom<,<1AA
31 2 ad4ant14 φwmAwseqw×Fxf:1m1-1 ontoAgIsom<,<1AAkAB
32 eqid jgj/kB=jgj/kB
33 simplrr φwmAwseqw×Fxf:1m1-1 ontoAgIsom<,<1AAm
34 simplrl φwmAwseqw×Fxf:1m1-1 ontoAgIsom<,<1AAw
35 simplll Awseqw×Fxf:1m1-1 ontoAgIsom<,<1AAAw
36 35 adantl φwmAwseqw×Fxf:1m1-1 ontoAgIsom<,<1AAAw
37 simprlr φwmAwseqw×Fxf:1m1-1 ontoAgIsom<,<1AAf:1m1-1 ontoA
38 simprr φwmAwseqw×Fxf:1m1-1 ontoAgIsom<,<1AAgIsom<,<1AA
39 1 31 3 32 33 34 36 37 38 prodmolem2a φwmAwseqw×Fxf:1m1-1 ontoAgIsom<,<1AAseqw×Fseq1×Gm
40 39 expr φwmAwseqw×Fxf:1m1-1 ontoAgIsom<,<1AAseqw×Fseq1×Gm
41 40 exlimdv φwmAwseqw×Fxf:1m1-1 ontoAggIsom<,<1AAseqw×Fseq1×Gm
42 30 41 mpd φwmAwseqw×Fxf:1m1-1 ontoAseqw×Fseq1×Gm
43 climuni seqw×Fxseqw×Fseq1×Gmx=seq1×Gm
44 13 42 43 syl2anc φwmAwseqw×Fxf:1m1-1 ontoAx=seq1×Gm
45 eqeq2 z=seq1×Gmx=zx=seq1×Gm
46 44 45 syl5ibrcom φwmAwseqw×Fxf:1m1-1 ontoAz=seq1×Gmx=z
47 46 expr φwmAwseqw×Fxf:1m1-1 ontoAz=seq1×Gmx=z
48 47 impd φwmAwseqw×Fxf:1m1-1 ontoAz=seq1×Gmx=z
49 48 exlimdv φwmAwseqw×Fxff:1m1-1 ontoAz=seq1×Gmx=z
50 49 expimpd φwmAwseqw×Fxff:1m1-1 ontoAz=seq1×Gmx=z
51 50 rexlimdvva φwmAwseqw×Fxff:1m1-1 ontoAz=seq1×Gmx=z
52 12 51 biimtrrid φwAwseqw×Fxmff:1m1-1 ontoAz=seq1×Gmx=z
53 52 expdimp φwAwseqw×Fxmff:1m1-1 ontoAz=seq1×Gmx=z
54 11 53 sylan2b φmAmseqm×Fxmff:1m1-1 ontoAz=seq1×Gmx=z
55 5 54 sylan2 φmAmnmyy0seqn×Fyseqm×Fxmff:1m1-1 ontoAz=seq1×Gmx=z