Description: Lemma for prodmo . (Contributed by Scott Fenton, 4-Dec-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | prodmo.1 | |
|
prodmo.2 | |
||
prodmo.3 | |
||
Assertion | prodmolem2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prodmo.1 | |
|
2 | prodmo.2 | |
|
3 | prodmo.3 | |
|
4 | 3simpb | |
|
5 | 4 | reximi | |
6 | fveq2 | |
|
7 | 6 | sseq2d | |
8 | seqeq1 | |
|
9 | 8 | breq1d | |
10 | 7 9 | anbi12d | |
11 | 10 | cbvrexvw | |
12 | reeanv | |
|
13 | simprlr | |
|
14 | simprll | |
|
15 | uzssz | |
|
16 | zssre | |
|
17 | 15 16 | sstri | |
18 | 14 17 | sstrdi | |
19 | ltso | |
|
20 | soss | |
|
21 | 18 19 20 | mpisyl | |
22 | fzfi | |
|
23 | ovex | |
|
24 | 23 | f1oen | |
25 | 24 | ad2antll | |
26 | 25 | ensymd | |
27 | enfii | |
|
28 | 22 26 27 | sylancr | |
29 | fz1iso | |
|
30 | 21 28 29 | syl2anc | |
31 | 2 | ad4ant14 | |
32 | eqid | |
|
33 | simplrr | |
|
34 | simplrl | |
|
35 | simplll | |
|
36 | 35 | adantl | |
37 | simprlr | |
|
38 | simprr | |
|
39 | 1 31 3 32 33 34 36 37 38 | prodmolem2a | |
40 | 39 | expr | |
41 | 40 | exlimdv | |
42 | 30 41 | mpd | |
43 | climuni | |
|
44 | 13 42 43 | syl2anc | |
45 | eqeq2 | |
|
46 | 44 45 | syl5ibrcom | |
47 | 46 | expr | |
48 | 47 | impd | |
49 | 48 | exlimdv | |
50 | 49 | expimpd | |
51 | 50 | rexlimdvva | |
52 | 12 51 | biimtrrid | |
53 | 52 | expdimp | |
54 | 11 53 | sylan2b | |
55 | 5 54 | sylan2 | |