Database
REAL AND COMPLEX NUMBERS
Elementary limits and convergence
Finite and infinite products
Complex products
prodmo
Next ⟩
zprod
Metamath Proof Explorer
Ascii
Unicode
Theorem
prodmo
Description:
A product has at most one limit.
(Contributed by
Scott Fenton
, 4-Dec-2017)
Ref
Expression
Hypotheses
prodmo.1
⊢
F
=
k
∈
ℤ
⟼
if
k
∈
A
B
1
prodmo.2
⊢
φ
∧
k
∈
A
→
B
∈
ℂ
prodmo.3
⦋
⦌
⊢
G
=
j
∈
ℕ
⟼
⦋
f
j
/
k
⦌
B
Assertion
prodmo
⊢
φ
→
∃
*
x
∃
m
∈
ℤ
A
⊆
ℤ
≥
m
∧
∃
n
∈
ℤ
≥
m
∃
y
y
≠
0
∧
seq
n
×
F
⇝
y
∧
seq
m
×
F
⇝
x
∨
∃
m
∈
ℕ
∃
f
f
:
1
…
m
⟶
1-1 onto
A
∧
x
=
seq
1
×
G
m
Proof
Step
Hyp
Ref
Expression
1
prodmo.1
⊢
F
=
k
∈
ℤ
⟼
if
k
∈
A
B
1
2
prodmo.2
⊢
φ
∧
k
∈
A
→
B
∈
ℂ
3
prodmo.3
⦋
⦌
⊢
G
=
j
∈
ℕ
⟼
⦋
f
j
/
k
⦌
B
4
3simpb
⊢
A
⊆
ℤ
≥
m
∧
∃
n
∈
ℤ
≥
m
∃
y
y
≠
0
∧
seq
n
×
F
⇝
y
∧
seq
m
×
F
⇝
x
→
A
⊆
ℤ
≥
m
∧
seq
m
×
F
⇝
x
5
4
reximi
⊢
∃
m
∈
ℤ
A
⊆
ℤ
≥
m
∧
∃
n
∈
ℤ
≥
m
∃
y
y
≠
0
∧
seq
n
×
F
⇝
y
∧
seq
m
×
F
⇝
x
→
∃
m
∈
ℤ
A
⊆
ℤ
≥
m
∧
seq
m
×
F
⇝
x
6
3simpb
⊢
A
⊆
ℤ
≥
m
∧
∃
n
∈
ℤ
≥
m
∃
y
y
≠
0
∧
seq
n
×
F
⇝
y
∧
seq
m
×
F
⇝
z
→
A
⊆
ℤ
≥
m
∧
seq
m
×
F
⇝
z
7
6
reximi
⊢
∃
m
∈
ℤ
A
⊆
ℤ
≥
m
∧
∃
n
∈
ℤ
≥
m
∃
y
y
≠
0
∧
seq
n
×
F
⇝
y
∧
seq
m
×
F
⇝
z
→
∃
m
∈
ℤ
A
⊆
ℤ
≥
m
∧
seq
m
×
F
⇝
z
8
fveq2
⊢
m
=
w
→
ℤ
≥
m
=
ℤ
≥
w
9
8
sseq2d
⊢
m
=
w
→
A
⊆
ℤ
≥
m
↔
A
⊆
ℤ
≥
w
10
seqeq1
⊢
m
=
w
→
seq
m
×
F
=
seq
w
×
F
11
10
breq1d
⊢
m
=
w
→
seq
m
×
F
⇝
z
↔
seq
w
×
F
⇝
z
12
9
11
anbi12d
⊢
m
=
w
→
A
⊆
ℤ
≥
m
∧
seq
m
×
F
⇝
z
↔
A
⊆
ℤ
≥
w
∧
seq
w
×
F
⇝
z
13
12
cbvrexvw
⊢
∃
m
∈
ℤ
A
⊆
ℤ
≥
m
∧
seq
m
×
F
⇝
z
↔
∃
w
∈
ℤ
A
⊆
ℤ
≥
w
∧
seq
w
×
F
⇝
z
14
13
anbi2i
⊢
∃
m
∈
ℤ
A
⊆
ℤ
≥
m
∧
seq
m
×
F
⇝
x
∧
∃
m
∈
ℤ
A
⊆
ℤ
≥
m
∧
seq
m
×
F
⇝
z
↔
∃
m
∈
ℤ
A
⊆
ℤ
≥
m
∧
seq
m
×
F
⇝
x
∧
∃
w
∈
ℤ
A
⊆
ℤ
≥
w
∧
seq
w
×
F
⇝
z
15
reeanv
⊢
∃
m
∈
ℤ
∃
w
∈
ℤ
A
⊆
ℤ
≥
m
∧
seq
m
×
F
⇝
x
∧
A
⊆
ℤ
≥
w
∧
seq
w
×
F
⇝
z
↔
∃
m
∈
ℤ
A
⊆
ℤ
≥
m
∧
seq
m
×
F
⇝
x
∧
∃
w
∈
ℤ
A
⊆
ℤ
≥
w
∧
seq
w
×
F
⇝
z
16
14
15
bitr4i
⊢
∃
m
∈
ℤ
A
⊆
ℤ
≥
m
∧
seq
m
×
F
⇝
x
∧
∃
m
∈
ℤ
A
⊆
ℤ
≥
m
∧
seq
m
×
F
⇝
z
↔
∃
m
∈
ℤ
∃
w
∈
ℤ
A
⊆
ℤ
≥
m
∧
seq
m
×
F
⇝
x
∧
A
⊆
ℤ
≥
w
∧
seq
w
×
F
⇝
z
17
simprlr
⊢
m
∈
ℤ
∧
w
∈
ℤ
∧
A
⊆
ℤ
≥
m
∧
seq
m
×
F
⇝
x
∧
A
⊆
ℤ
≥
w
∧
seq
w
×
F
⇝
z
→
seq
m
×
F
⇝
x
18
17
adantl
⊢
φ
∧
m
∈
ℤ
∧
w
∈
ℤ
∧
A
⊆
ℤ
≥
m
∧
seq
m
×
F
⇝
x
∧
A
⊆
ℤ
≥
w
∧
seq
w
×
F
⇝
z
→
seq
m
×
F
⇝
x
19
2
adantlr
⊢
φ
∧
m
∈
ℤ
∧
w
∈
ℤ
∧
A
⊆
ℤ
≥
m
∧
seq
m
×
F
⇝
x
∧
A
⊆
ℤ
≥
w
∧
seq
w
×
F
⇝
z
∧
k
∈
A
→
B
∈
ℂ
20
simprll
⊢
φ
∧
m
∈
ℤ
∧
w
∈
ℤ
∧
A
⊆
ℤ
≥
m
∧
seq
m
×
F
⇝
x
∧
A
⊆
ℤ
≥
w
∧
seq
w
×
F
⇝
z
→
m
∈
ℤ
21
simprlr
⊢
φ
∧
m
∈
ℤ
∧
w
∈
ℤ
∧
A
⊆
ℤ
≥
m
∧
seq
m
×
F
⇝
x
∧
A
⊆
ℤ
≥
w
∧
seq
w
×
F
⇝
z
→
w
∈
ℤ
22
simprll
⊢
m
∈
ℤ
∧
w
∈
ℤ
∧
A
⊆
ℤ
≥
m
∧
seq
m
×
F
⇝
x
∧
A
⊆
ℤ
≥
w
∧
seq
w
×
F
⇝
z
→
A
⊆
ℤ
≥
m
23
22
adantl
⊢
φ
∧
m
∈
ℤ
∧
w
∈
ℤ
∧
A
⊆
ℤ
≥
m
∧
seq
m
×
F
⇝
x
∧
A
⊆
ℤ
≥
w
∧
seq
w
×
F
⇝
z
→
A
⊆
ℤ
≥
m
24
simprrl
⊢
m
∈
ℤ
∧
w
∈
ℤ
∧
A
⊆
ℤ
≥
m
∧
seq
m
×
F
⇝
x
∧
A
⊆
ℤ
≥
w
∧
seq
w
×
F
⇝
z
→
A
⊆
ℤ
≥
w
25
24
adantl
⊢
φ
∧
m
∈
ℤ
∧
w
∈
ℤ
∧
A
⊆
ℤ
≥
m
∧
seq
m
×
F
⇝
x
∧
A
⊆
ℤ
≥
w
∧
seq
w
×
F
⇝
z
→
A
⊆
ℤ
≥
w
26
1
19
20
21
23
25
prodrb
⊢
φ
∧
m
∈
ℤ
∧
w
∈
ℤ
∧
A
⊆
ℤ
≥
m
∧
seq
m
×
F
⇝
x
∧
A
⊆
ℤ
≥
w
∧
seq
w
×
F
⇝
z
→
seq
m
×
F
⇝
x
↔
seq
w
×
F
⇝
x
27
18
26
mpbid
⊢
φ
∧
m
∈
ℤ
∧
w
∈
ℤ
∧
A
⊆
ℤ
≥
m
∧
seq
m
×
F
⇝
x
∧
A
⊆
ℤ
≥
w
∧
seq
w
×
F
⇝
z
→
seq
w
×
F
⇝
x
28
simprrr
⊢
m
∈
ℤ
∧
w
∈
ℤ
∧
A
⊆
ℤ
≥
m
∧
seq
m
×
F
⇝
x
∧
A
⊆
ℤ
≥
w
∧
seq
w
×
F
⇝
z
→
seq
w
×
F
⇝
z
29
28
adantl
⊢
φ
∧
m
∈
ℤ
∧
w
∈
ℤ
∧
A
⊆
ℤ
≥
m
∧
seq
m
×
F
⇝
x
∧
A
⊆
ℤ
≥
w
∧
seq
w
×
F
⇝
z
→
seq
w
×
F
⇝
z
30
climuni
⊢
seq
w
×
F
⇝
x
∧
seq
w
×
F
⇝
z
→
x
=
z
31
27
29
30
syl2anc
⊢
φ
∧
m
∈
ℤ
∧
w
∈
ℤ
∧
A
⊆
ℤ
≥
m
∧
seq
m
×
F
⇝
x
∧
A
⊆
ℤ
≥
w
∧
seq
w
×
F
⇝
z
→
x
=
z
32
31
expcom
⊢
m
∈
ℤ
∧
w
∈
ℤ
∧
A
⊆
ℤ
≥
m
∧
seq
m
×
F
⇝
x
∧
A
⊆
ℤ
≥
w
∧
seq
w
×
F
⇝
z
→
φ
→
x
=
z
33
32
ex
⊢
m
∈
ℤ
∧
w
∈
ℤ
→
A
⊆
ℤ
≥
m
∧
seq
m
×
F
⇝
x
∧
A
⊆
ℤ
≥
w
∧
seq
w
×
F
⇝
z
→
φ
→
x
=
z
34
33
rexlimivv
⊢
∃
m
∈
ℤ
∃
w
∈
ℤ
A
⊆
ℤ
≥
m
∧
seq
m
×
F
⇝
x
∧
A
⊆
ℤ
≥
w
∧
seq
w
×
F
⇝
z
→
φ
→
x
=
z
35
16
34
sylbi
⊢
∃
m
∈
ℤ
A
⊆
ℤ
≥
m
∧
seq
m
×
F
⇝
x
∧
∃
m
∈
ℤ
A
⊆
ℤ
≥
m
∧
seq
m
×
F
⇝
z
→
φ
→
x
=
z
36
5
7
35
syl2an
⊢
∃
m
∈
ℤ
A
⊆
ℤ
≥
m
∧
∃
n
∈
ℤ
≥
m
∃
y
y
≠
0
∧
seq
n
×
F
⇝
y
∧
seq
m
×
F
⇝
x
∧
∃
m
∈
ℤ
A
⊆
ℤ
≥
m
∧
∃
n
∈
ℤ
≥
m
∃
y
y
≠
0
∧
seq
n
×
F
⇝
y
∧
seq
m
×
F
⇝
z
→
φ
→
x
=
z
37
1
2
3
prodmolem2
⊢
φ
∧
∃
m
∈
ℤ
A
⊆
ℤ
≥
m
∧
∃
n
∈
ℤ
≥
m
∃
y
y
≠
0
∧
seq
n
×
F
⇝
y
∧
seq
m
×
F
⇝
z
→
∃
m
∈
ℕ
∃
f
f
:
1
…
m
⟶
1-1 onto
A
∧
x
=
seq
1
×
G
m
→
z
=
x
38
equcomi
⊢
z
=
x
→
x
=
z
39
37
38
syl6
⊢
φ
∧
∃
m
∈
ℤ
A
⊆
ℤ
≥
m
∧
∃
n
∈
ℤ
≥
m
∃
y
y
≠
0
∧
seq
n
×
F
⇝
y
∧
seq
m
×
F
⇝
z
→
∃
m
∈
ℕ
∃
f
f
:
1
…
m
⟶
1-1 onto
A
∧
x
=
seq
1
×
G
m
→
x
=
z
40
39
expimpd
⊢
φ
→
∃
m
∈
ℤ
A
⊆
ℤ
≥
m
∧
∃
n
∈
ℤ
≥
m
∃
y
y
≠
0
∧
seq
n
×
F
⇝
y
∧
seq
m
×
F
⇝
z
∧
∃
m
∈
ℕ
∃
f
f
:
1
…
m
⟶
1-1 onto
A
∧
x
=
seq
1
×
G
m
→
x
=
z
41
40
com12
⊢
∃
m
∈
ℤ
A
⊆
ℤ
≥
m
∧
∃
n
∈
ℤ
≥
m
∃
y
y
≠
0
∧
seq
n
×
F
⇝
y
∧
seq
m
×
F
⇝
z
∧
∃
m
∈
ℕ
∃
f
f
:
1
…
m
⟶
1-1 onto
A
∧
x
=
seq
1
×
G
m
→
φ
→
x
=
z
42
41
ancoms
⊢
∃
m
∈
ℕ
∃
f
f
:
1
…
m
⟶
1-1 onto
A
∧
x
=
seq
1
×
G
m
∧
∃
m
∈
ℤ
A
⊆
ℤ
≥
m
∧
∃
n
∈
ℤ
≥
m
∃
y
y
≠
0
∧
seq
n
×
F
⇝
y
∧
seq
m
×
F
⇝
z
→
φ
→
x
=
z
43
1
2
3
prodmolem2
⊢
φ
∧
∃
m
∈
ℤ
A
⊆
ℤ
≥
m
∧
∃
n
∈
ℤ
≥
m
∃
y
y
≠
0
∧
seq
n
×
F
⇝
y
∧
seq
m
×
F
⇝
x
→
∃
m
∈
ℕ
∃
f
f
:
1
…
m
⟶
1-1 onto
A
∧
z
=
seq
1
×
G
m
→
x
=
z
44
43
expimpd
⊢
φ
→
∃
m
∈
ℤ
A
⊆
ℤ
≥
m
∧
∃
n
∈
ℤ
≥
m
∃
y
y
≠
0
∧
seq
n
×
F
⇝
y
∧
seq
m
×
F
⇝
x
∧
∃
m
∈
ℕ
∃
f
f
:
1
…
m
⟶
1-1 onto
A
∧
z
=
seq
1
×
G
m
→
x
=
z
45
44
com12
⊢
∃
m
∈
ℤ
A
⊆
ℤ
≥
m
∧
∃
n
∈
ℤ
≥
m
∃
y
y
≠
0
∧
seq
n
×
F
⇝
y
∧
seq
m
×
F
⇝
x
∧
∃
m
∈
ℕ
∃
f
f
:
1
…
m
⟶
1-1 onto
A
∧
z
=
seq
1
×
G
m
→
φ
→
x
=
z
46
reeanv
⦋
⦌
⦋
⦌
⊢
∃
m
∈
ℕ
∃
w
∈
ℕ
∃
f
f
:
1
…
m
⟶
1-1 onto
A
∧
x
=
seq
1
×
G
m
∧
∃
g
g
:
1
…
w
⟶
1-1 onto
A
∧
z
=
seq
1
×
j
∈
ℕ
⟼
⦋
g
j
/
k
⦌
B
w
↔
∃
m
∈
ℕ
∃
f
f
:
1
…
m
⟶
1-1 onto
A
∧
x
=
seq
1
×
G
m
∧
∃
w
∈
ℕ
∃
g
g
:
1
…
w
⟶
1-1 onto
A
∧
z
=
seq
1
×
j
∈
ℕ
⟼
⦋
g
j
/
k
⦌
B
w
47
exdistrv
⦋
⦌
⦋
⦌
⊢
∃
f
∃
g
f
:
1
…
m
⟶
1-1 onto
A
∧
x
=
seq
1
×
G
m
∧
g
:
1
…
w
⟶
1-1 onto
A
∧
z
=
seq
1
×
j
∈
ℕ
⟼
⦋
g
j
/
k
⦌
B
w
↔
∃
f
f
:
1
…
m
⟶
1-1 onto
A
∧
x
=
seq
1
×
G
m
∧
∃
g
g
:
1
…
w
⟶
1-1 onto
A
∧
z
=
seq
1
×
j
∈
ℕ
⟼
⦋
g
j
/
k
⦌
B
w
48
47
2rexbii
⦋
⦌
⦋
⦌
⊢
∃
m
∈
ℕ
∃
w
∈
ℕ
∃
f
∃
g
f
:
1
…
m
⟶
1-1 onto
A
∧
x
=
seq
1
×
G
m
∧
g
:
1
…
w
⟶
1-1 onto
A
∧
z
=
seq
1
×
j
∈
ℕ
⟼
⦋
g
j
/
k
⦌
B
w
↔
∃
m
∈
ℕ
∃
w
∈
ℕ
∃
f
f
:
1
…
m
⟶
1-1 onto
A
∧
x
=
seq
1
×
G
m
∧
∃
g
g
:
1
…
w
⟶
1-1 onto
A
∧
z
=
seq
1
×
j
∈
ℕ
⟼
⦋
g
j
/
k
⦌
B
w
49
oveq2
⊢
m
=
w
→
1
…
m
=
1
…
w
50
49
f1oeq2d
⊢
m
=
w
→
f
:
1
…
m
⟶
1-1 onto
A
↔
f
:
1
…
w
⟶
1-1 onto
A
51
fveq2
⊢
m
=
w
→
seq
1
×
G
m
=
seq
1
×
G
w
52
51
eqeq2d
⊢
m
=
w
→
z
=
seq
1
×
G
m
↔
z
=
seq
1
×
G
w
53
50
52
anbi12d
⊢
m
=
w
→
f
:
1
…
m
⟶
1-1 onto
A
∧
z
=
seq
1
×
G
m
↔
f
:
1
…
w
⟶
1-1 onto
A
∧
z
=
seq
1
×
G
w
54
53
exbidv
⊢
m
=
w
→
∃
f
f
:
1
…
m
⟶
1-1 onto
A
∧
z
=
seq
1
×
G
m
↔
∃
f
f
:
1
…
w
⟶
1-1 onto
A
∧
z
=
seq
1
×
G
w
55
f1oeq1
⊢
f
=
g
→
f
:
1
…
w
⟶
1-1 onto
A
↔
g
:
1
…
w
⟶
1-1 onto
A
56
fveq1
⊢
f
=
g
→
f
j
=
g
j
57
56
csbeq1d
⦋
⦌
⦋
⦌
⊢
f
=
g
→
⦋
f
j
/
k
⦌
B
=
⦋
g
j
/
k
⦌
B
58
57
mpteq2dv
⦋
⦌
⦋
⦌
⊢
f
=
g
→
j
∈
ℕ
⟼
⦋
f
j
/
k
⦌
B
=
j
∈
ℕ
⟼
⦋
g
j
/
k
⦌
B
59
3
58
eqtrid
⦋
⦌
⊢
f
=
g
→
G
=
j
∈
ℕ
⟼
⦋
g
j
/
k
⦌
B
60
59
seqeq3d
⦋
⦌
⊢
f
=
g
→
seq
1
×
G
=
seq
1
×
j
∈
ℕ
⟼
⦋
g
j
/
k
⦌
B
61
60
fveq1d
⦋
⦌
⊢
f
=
g
→
seq
1
×
G
w
=
seq
1
×
j
∈
ℕ
⟼
⦋
g
j
/
k
⦌
B
w
62
61
eqeq2d
⦋
⦌
⊢
f
=
g
→
z
=
seq
1
×
G
w
↔
z
=
seq
1
×
j
∈
ℕ
⟼
⦋
g
j
/
k
⦌
B
w
63
55
62
anbi12d
⦋
⦌
⊢
f
=
g
→
f
:
1
…
w
⟶
1-1 onto
A
∧
z
=
seq
1
×
G
w
↔
g
:
1
…
w
⟶
1-1 onto
A
∧
z
=
seq
1
×
j
∈
ℕ
⟼
⦋
g
j
/
k
⦌
B
w
64
63
cbvexvw
⦋
⦌
⊢
∃
f
f
:
1
…
w
⟶
1-1 onto
A
∧
z
=
seq
1
×
G
w
↔
∃
g
g
:
1
…
w
⟶
1-1 onto
A
∧
z
=
seq
1
×
j
∈
ℕ
⟼
⦋
g
j
/
k
⦌
B
w
65
54
64
bitrdi
⦋
⦌
⊢
m
=
w
→
∃
f
f
:
1
…
m
⟶
1-1 onto
A
∧
z
=
seq
1
×
G
m
↔
∃
g
g
:
1
…
w
⟶
1-1 onto
A
∧
z
=
seq
1
×
j
∈
ℕ
⟼
⦋
g
j
/
k
⦌
B
w
66
65
cbvrexvw
⦋
⦌
⊢
∃
m
∈
ℕ
∃
f
f
:
1
…
m
⟶
1-1 onto
A
∧
z
=
seq
1
×
G
m
↔
∃
w
∈
ℕ
∃
g
g
:
1
…
w
⟶
1-1 onto
A
∧
z
=
seq
1
×
j
∈
ℕ
⟼
⦋
g
j
/
k
⦌
B
w
67
66
anbi2i
⦋
⦌
⊢
∃
m
∈
ℕ
∃
f
f
:
1
…
m
⟶
1-1 onto
A
∧
x
=
seq
1
×
G
m
∧
∃
m
∈
ℕ
∃
f
f
:
1
…
m
⟶
1-1 onto
A
∧
z
=
seq
1
×
G
m
↔
∃
m
∈
ℕ
∃
f
f
:
1
…
m
⟶
1-1 onto
A
∧
x
=
seq
1
×
G
m
∧
∃
w
∈
ℕ
∃
g
g
:
1
…
w
⟶
1-1 onto
A
∧
z
=
seq
1
×
j
∈
ℕ
⟼
⦋
g
j
/
k
⦌
B
w
68
46
48
67
3bitr4i
⦋
⦌
⊢
∃
m
∈
ℕ
∃
w
∈
ℕ
∃
f
∃
g
f
:
1
…
m
⟶
1-1 onto
A
∧
x
=
seq
1
×
G
m
∧
g
:
1
…
w
⟶
1-1 onto
A
∧
z
=
seq
1
×
j
∈
ℕ
⟼
⦋
g
j
/
k
⦌
B
w
↔
∃
m
∈
ℕ
∃
f
f
:
1
…
m
⟶
1-1 onto
A
∧
x
=
seq
1
×
G
m
∧
∃
m
∈
ℕ
∃
f
f
:
1
…
m
⟶
1-1 onto
A
∧
z
=
seq
1
×
G
m
69
an4
⦋
⦌
⦋
⦌
⊢
f
:
1
…
m
⟶
1-1 onto
A
∧
x
=
seq
1
×
G
m
∧
g
:
1
…
w
⟶
1-1 onto
A
∧
z
=
seq
1
×
j
∈
ℕ
⟼
⦋
g
j
/
k
⦌
B
w
↔
f
:
1
…
m
⟶
1-1 onto
A
∧
g
:
1
…
w
⟶
1-1 onto
A
∧
x
=
seq
1
×
G
m
∧
z
=
seq
1
×
j
∈
ℕ
⟼
⦋
g
j
/
k
⦌
B
w
70
2
ad4ant14
⊢
φ
∧
m
∈
ℕ
∧
w
∈
ℕ
∧
f
:
1
…
m
⟶
1-1 onto
A
∧
g
:
1
…
w
⟶
1-1 onto
A
∧
k
∈
A
→
B
∈
ℂ
71
fveq2
⊢
j
=
a
→
f
j
=
f
a
72
71
csbeq1d
⦋
⦌
⦋
⦌
⊢
j
=
a
→
⦋
f
j
/
k
⦌
B
=
⦋
f
a
/
k
⦌
B
73
72
cbvmptv
⦋
⦌
⦋
⦌
⊢
j
∈
ℕ
⟼
⦋
f
j
/
k
⦌
B
=
a
∈
ℕ
⟼
⦋
f
a
/
k
⦌
B
74
3
73
eqtri
⦋
⦌
⊢
G
=
a
∈
ℕ
⟼
⦋
f
a
/
k
⦌
B
75
fveq2
⊢
j
=
a
→
g
j
=
g
a
76
75
csbeq1d
⦋
⦌
⦋
⦌
⊢
j
=
a
→
⦋
g
j
/
k
⦌
B
=
⦋
g
a
/
k
⦌
B
77
76
cbvmptv
⦋
⦌
⦋
⦌
⊢
j
∈
ℕ
⟼
⦋
g
j
/
k
⦌
B
=
a
∈
ℕ
⟼
⦋
g
a
/
k
⦌
B
78
simplr
⊢
φ
∧
m
∈
ℕ
∧
w
∈
ℕ
∧
f
:
1
…
m
⟶
1-1 onto
A
∧
g
:
1
…
w
⟶
1-1 onto
A
→
m
∈
ℕ
∧
w
∈
ℕ
79
simprl
⊢
φ
∧
m
∈
ℕ
∧
w
∈
ℕ
∧
f
:
1
…
m
⟶
1-1 onto
A
∧
g
:
1
…
w
⟶
1-1 onto
A
→
f
:
1
…
m
⟶
1-1 onto
A
80
simprr
⊢
φ
∧
m
∈
ℕ
∧
w
∈
ℕ
∧
f
:
1
…
m
⟶
1-1 onto
A
∧
g
:
1
…
w
⟶
1-1 onto
A
→
g
:
1
…
w
⟶
1-1 onto
A
81
1
70
74
77
78
79
80
prodmolem3
⦋
⦌
⊢
φ
∧
m
∈
ℕ
∧
w
∈
ℕ
∧
f
:
1
…
m
⟶
1-1 onto
A
∧
g
:
1
…
w
⟶
1-1 onto
A
→
seq
1
×
G
m
=
seq
1
×
j
∈
ℕ
⟼
⦋
g
j
/
k
⦌
B
w
82
eqeq12
⦋
⦌
⦋
⦌
⊢
x
=
seq
1
×
G
m
∧
z
=
seq
1
×
j
∈
ℕ
⟼
⦋
g
j
/
k
⦌
B
w
→
x
=
z
↔
seq
1
×
G
m
=
seq
1
×
j
∈
ℕ
⟼
⦋
g
j
/
k
⦌
B
w
83
81
82
syl5ibrcom
⦋
⦌
⊢
φ
∧
m
∈
ℕ
∧
w
∈
ℕ
∧
f
:
1
…
m
⟶
1-1 onto
A
∧
g
:
1
…
w
⟶
1-1 onto
A
→
x
=
seq
1
×
G
m
∧
z
=
seq
1
×
j
∈
ℕ
⟼
⦋
g
j
/
k
⦌
B
w
→
x
=
z
84
83
expimpd
⦋
⦌
⊢
φ
∧
m
∈
ℕ
∧
w
∈
ℕ
→
f
:
1
…
m
⟶
1-1 onto
A
∧
g
:
1
…
w
⟶
1-1 onto
A
∧
x
=
seq
1
×
G
m
∧
z
=
seq
1
×
j
∈
ℕ
⟼
⦋
g
j
/
k
⦌
B
w
→
x
=
z
85
69
84
biimtrid
⦋
⦌
⊢
φ
∧
m
∈
ℕ
∧
w
∈
ℕ
→
f
:
1
…
m
⟶
1-1 onto
A
∧
x
=
seq
1
×
G
m
∧
g
:
1
…
w
⟶
1-1 onto
A
∧
z
=
seq
1
×
j
∈
ℕ
⟼
⦋
g
j
/
k
⦌
B
w
→
x
=
z
86
85
exlimdvv
⦋
⦌
⊢
φ
∧
m
∈
ℕ
∧
w
∈
ℕ
→
∃
f
∃
g
f
:
1
…
m
⟶
1-1 onto
A
∧
x
=
seq
1
×
G
m
∧
g
:
1
…
w
⟶
1-1 onto
A
∧
z
=
seq
1
×
j
∈
ℕ
⟼
⦋
g
j
/
k
⦌
B
w
→
x
=
z
87
86
rexlimdvva
⦋
⦌
⊢
φ
→
∃
m
∈
ℕ
∃
w
∈
ℕ
∃
f
∃
g
f
:
1
…
m
⟶
1-1 onto
A
∧
x
=
seq
1
×
G
m
∧
g
:
1
…
w
⟶
1-1 onto
A
∧
z
=
seq
1
×
j
∈
ℕ
⟼
⦋
g
j
/
k
⦌
B
w
→
x
=
z
88
68
87
biimtrrid
⊢
φ
→
∃
m
∈
ℕ
∃
f
f
:
1
…
m
⟶
1-1 onto
A
∧
x
=
seq
1
×
G
m
∧
∃
m
∈
ℕ
∃
f
f
:
1
…
m
⟶
1-1 onto
A
∧
z
=
seq
1
×
G
m
→
x
=
z
89
88
com12
⊢
∃
m
∈
ℕ
∃
f
f
:
1
…
m
⟶
1-1 onto
A
∧
x
=
seq
1
×
G
m
∧
∃
m
∈
ℕ
∃
f
f
:
1
…
m
⟶
1-1 onto
A
∧
z
=
seq
1
×
G
m
→
φ
→
x
=
z
90
36
42
45
89
ccase
⊢
∃
m
∈
ℤ
A
⊆
ℤ
≥
m
∧
∃
n
∈
ℤ
≥
m
∃
y
y
≠
0
∧
seq
n
×
F
⇝
y
∧
seq
m
×
F
⇝
x
∨
∃
m
∈
ℕ
∃
f
f
:
1
…
m
⟶
1-1 onto
A
∧
x
=
seq
1
×
G
m
∧
∃
m
∈
ℤ
A
⊆
ℤ
≥
m
∧
∃
n
∈
ℤ
≥
m
∃
y
y
≠
0
∧
seq
n
×
F
⇝
y
∧
seq
m
×
F
⇝
z
∨
∃
m
∈
ℕ
∃
f
f
:
1
…
m
⟶
1-1 onto
A
∧
z
=
seq
1
×
G
m
→
φ
→
x
=
z
91
90
com12
⊢
φ
→
∃
m
∈
ℤ
A
⊆
ℤ
≥
m
∧
∃
n
∈
ℤ
≥
m
∃
y
y
≠
0
∧
seq
n
×
F
⇝
y
∧
seq
m
×
F
⇝
x
∨
∃
m
∈
ℕ
∃
f
f
:
1
…
m
⟶
1-1 onto
A
∧
x
=
seq
1
×
G
m
∧
∃
m
∈
ℤ
A
⊆
ℤ
≥
m
∧
∃
n
∈
ℤ
≥
m
∃
y
y
≠
0
∧
seq
n
×
F
⇝
y
∧
seq
m
×
F
⇝
z
∨
∃
m
∈
ℕ
∃
f
f
:
1
…
m
⟶
1-1 onto
A
∧
z
=
seq
1
×
G
m
→
x
=
z
92
91
alrimivv
⊢
φ
→
∀
x
∀
z
∃
m
∈
ℤ
A
⊆
ℤ
≥
m
∧
∃
n
∈
ℤ
≥
m
∃
y
y
≠
0
∧
seq
n
×
F
⇝
y
∧
seq
m
×
F
⇝
x
∨
∃
m
∈
ℕ
∃
f
f
:
1
…
m
⟶
1-1 onto
A
∧
x
=
seq
1
×
G
m
∧
∃
m
∈
ℤ
A
⊆
ℤ
≥
m
∧
∃
n
∈
ℤ
≥
m
∃
y
y
≠
0
∧
seq
n
×
F
⇝
y
∧
seq
m
×
F
⇝
z
∨
∃
m
∈
ℕ
∃
f
f
:
1
…
m
⟶
1-1 onto
A
∧
z
=
seq
1
×
G
m
→
x
=
z
93
breq2
⊢
x
=
z
→
seq
m
×
F
⇝
x
↔
seq
m
×
F
⇝
z
94
93
3anbi3d
⊢
x
=
z
→
A
⊆
ℤ
≥
m
∧
∃
n
∈
ℤ
≥
m
∃
y
y
≠
0
∧
seq
n
×
F
⇝
y
∧
seq
m
×
F
⇝
x
↔
A
⊆
ℤ
≥
m
∧
∃
n
∈
ℤ
≥
m
∃
y
y
≠
0
∧
seq
n
×
F
⇝
y
∧
seq
m
×
F
⇝
z
95
94
rexbidv
⊢
x
=
z
→
∃
m
∈
ℤ
A
⊆
ℤ
≥
m
∧
∃
n
∈
ℤ
≥
m
∃
y
y
≠
0
∧
seq
n
×
F
⇝
y
∧
seq
m
×
F
⇝
x
↔
∃
m
∈
ℤ
A
⊆
ℤ
≥
m
∧
∃
n
∈
ℤ
≥
m
∃
y
y
≠
0
∧
seq
n
×
F
⇝
y
∧
seq
m
×
F
⇝
z
96
eqeq1
⊢
x
=
z
→
x
=
seq
1
×
G
m
↔
z
=
seq
1
×
G
m
97
96
anbi2d
⊢
x
=
z
→
f
:
1
…
m
⟶
1-1 onto
A
∧
x
=
seq
1
×
G
m
↔
f
:
1
…
m
⟶
1-1 onto
A
∧
z
=
seq
1
×
G
m
98
97
exbidv
⊢
x
=
z
→
∃
f
f
:
1
…
m
⟶
1-1 onto
A
∧
x
=
seq
1
×
G
m
↔
∃
f
f
:
1
…
m
⟶
1-1 onto
A
∧
z
=
seq
1
×
G
m
99
98
rexbidv
⊢
x
=
z
→
∃
m
∈
ℕ
∃
f
f
:
1
…
m
⟶
1-1 onto
A
∧
x
=
seq
1
×
G
m
↔
∃
m
∈
ℕ
∃
f
f
:
1
…
m
⟶
1-1 onto
A
∧
z
=
seq
1
×
G
m
100
95
99
orbi12d
⊢
x
=
z
→
∃
m
∈
ℤ
A
⊆
ℤ
≥
m
∧
∃
n
∈
ℤ
≥
m
∃
y
y
≠
0
∧
seq
n
×
F
⇝
y
∧
seq
m
×
F
⇝
x
∨
∃
m
∈
ℕ
∃
f
f
:
1
…
m
⟶
1-1 onto
A
∧
x
=
seq
1
×
G
m
↔
∃
m
∈
ℤ
A
⊆
ℤ
≥
m
∧
∃
n
∈
ℤ
≥
m
∃
y
y
≠
0
∧
seq
n
×
F
⇝
y
∧
seq
m
×
F
⇝
z
∨
∃
m
∈
ℕ
∃
f
f
:
1
…
m
⟶
1-1 onto
A
∧
z
=
seq
1
×
G
m
101
100
mo4
⊢
∃
*
x
∃
m
∈
ℤ
A
⊆
ℤ
≥
m
∧
∃
n
∈
ℤ
≥
m
∃
y
y
≠
0
∧
seq
n
×
F
⇝
y
∧
seq
m
×
F
⇝
x
∨
∃
m
∈
ℕ
∃
f
f
:
1
…
m
⟶
1-1 onto
A
∧
x
=
seq
1
×
G
m
↔
∀
x
∀
z
∃
m
∈
ℤ
A
⊆
ℤ
≥
m
∧
∃
n
∈
ℤ
≥
m
∃
y
y
≠
0
∧
seq
n
×
F
⇝
y
∧
seq
m
×
F
⇝
x
∨
∃
m
∈
ℕ
∃
f
f
:
1
…
m
⟶
1-1 onto
A
∧
x
=
seq
1
×
G
m
∧
∃
m
∈
ℤ
A
⊆
ℤ
≥
m
∧
∃
n
∈
ℤ
≥
m
∃
y
y
≠
0
∧
seq
n
×
F
⇝
y
∧
seq
m
×
F
⇝
z
∨
∃
m
∈
ℕ
∃
f
f
:
1
…
m
⟶
1-1 onto
A
∧
z
=
seq
1
×
G
m
→
x
=
z
102
92
101
sylibr
⊢
φ
→
∃
*
x
∃
m
∈
ℤ
A
⊆
ℤ
≥
m
∧
∃
n
∈
ℤ
≥
m
∃
y
y
≠
0
∧
seq
n
×
F
⇝
y
∧
seq
m
×
F
⇝
x
∨
∃
m
∈
ℕ
∃
f
f
:
1
…
m
⟶
1-1 onto
A
∧
x
=
seq
1
×
G
m