Metamath Proof Explorer


Theorem prodmo

Description: A product has at most one limit. (Contributed by Scott Fenton, 4-Dec-2017)

Ref Expression
Hypotheses prodmo.1 F=kifkAB1
prodmo.2 φkAB
prodmo.3 G=jfj/kB
Assertion prodmo φ*xmAmnmyy0seqn×Fyseqm×Fxmff:1m1-1 ontoAx=seq1×Gm

Proof

Step Hyp Ref Expression
1 prodmo.1 F=kifkAB1
2 prodmo.2 φkAB
3 prodmo.3 G=jfj/kB
4 3simpb Amnmyy0seqn×Fyseqm×FxAmseqm×Fx
5 4 reximi mAmnmyy0seqn×Fyseqm×FxmAmseqm×Fx
6 3simpb Amnmyy0seqn×Fyseqm×FzAmseqm×Fz
7 6 reximi mAmnmyy0seqn×Fyseqm×FzmAmseqm×Fz
8 fveq2 m=wm=w
9 8 sseq2d m=wAmAw
10 seqeq1 m=wseqm×F=seqw×F
11 10 breq1d m=wseqm×Fzseqw×Fz
12 9 11 anbi12d m=wAmseqm×FzAwseqw×Fz
13 12 cbvrexvw mAmseqm×FzwAwseqw×Fz
14 13 anbi2i mAmseqm×FxmAmseqm×FzmAmseqm×FxwAwseqw×Fz
15 reeanv mwAmseqm×FxAwseqw×FzmAmseqm×FxwAwseqw×Fz
16 14 15 bitr4i mAmseqm×FxmAmseqm×FzmwAmseqm×FxAwseqw×Fz
17 simprlr mwAmseqm×FxAwseqw×Fzseqm×Fx
18 17 adantl φmwAmseqm×FxAwseqw×Fzseqm×Fx
19 2 adantlr φmwAmseqm×FxAwseqw×FzkAB
20 simprll φmwAmseqm×FxAwseqw×Fzm
21 simprlr φmwAmseqm×FxAwseqw×Fzw
22 simprll mwAmseqm×FxAwseqw×FzAm
23 22 adantl φmwAmseqm×FxAwseqw×FzAm
24 simprrl mwAmseqm×FxAwseqw×FzAw
25 24 adantl φmwAmseqm×FxAwseqw×FzAw
26 1 19 20 21 23 25 prodrb φmwAmseqm×FxAwseqw×Fzseqm×Fxseqw×Fx
27 18 26 mpbid φmwAmseqm×FxAwseqw×Fzseqw×Fx
28 simprrr mwAmseqm×FxAwseqw×Fzseqw×Fz
29 28 adantl φmwAmseqm×FxAwseqw×Fzseqw×Fz
30 climuni seqw×Fxseqw×Fzx=z
31 27 29 30 syl2anc φmwAmseqm×FxAwseqw×Fzx=z
32 31 expcom mwAmseqm×FxAwseqw×Fzφx=z
33 32 ex mwAmseqm×FxAwseqw×Fzφx=z
34 33 rexlimivv mwAmseqm×FxAwseqw×Fzφx=z
35 16 34 sylbi mAmseqm×FxmAmseqm×Fzφx=z
36 5 7 35 syl2an mAmnmyy0seqn×Fyseqm×FxmAmnmyy0seqn×Fyseqm×Fzφx=z
37 1 2 3 prodmolem2 φmAmnmyy0seqn×Fyseqm×Fzmff:1m1-1 ontoAx=seq1×Gmz=x
38 equcomi z=xx=z
39 37 38 syl6 φmAmnmyy0seqn×Fyseqm×Fzmff:1m1-1 ontoAx=seq1×Gmx=z
40 39 expimpd φmAmnmyy0seqn×Fyseqm×Fzmff:1m1-1 ontoAx=seq1×Gmx=z
41 40 com12 mAmnmyy0seqn×Fyseqm×Fzmff:1m1-1 ontoAx=seq1×Gmφx=z
42 41 ancoms mff:1m1-1 ontoAx=seq1×GmmAmnmyy0seqn×Fyseqm×Fzφx=z
43 1 2 3 prodmolem2 φmAmnmyy0seqn×Fyseqm×Fxmff:1m1-1 ontoAz=seq1×Gmx=z
44 43 expimpd φmAmnmyy0seqn×Fyseqm×Fxmff:1m1-1 ontoAz=seq1×Gmx=z
45 44 com12 mAmnmyy0seqn×Fyseqm×Fxmff:1m1-1 ontoAz=seq1×Gmφx=z
46 reeanv mwff:1m1-1 ontoAx=seq1×Gmgg:1w1-1 ontoAz=seq1×jgj/kBwmff:1m1-1 ontoAx=seq1×Gmwgg:1w1-1 ontoAz=seq1×jgj/kBw
47 exdistrv fgf:1m1-1 ontoAx=seq1×Gmg:1w1-1 ontoAz=seq1×jgj/kBwff:1m1-1 ontoAx=seq1×Gmgg:1w1-1 ontoAz=seq1×jgj/kBw
48 47 2rexbii mwfgf:1m1-1 ontoAx=seq1×Gmg:1w1-1 ontoAz=seq1×jgj/kBwmwff:1m1-1 ontoAx=seq1×Gmgg:1w1-1 ontoAz=seq1×jgj/kBw
49 oveq2 m=w1m=1w
50 49 f1oeq2d m=wf:1m1-1 ontoAf:1w1-1 ontoA
51 fveq2 m=wseq1×Gm=seq1×Gw
52 51 eqeq2d m=wz=seq1×Gmz=seq1×Gw
53 50 52 anbi12d m=wf:1m1-1 ontoAz=seq1×Gmf:1w1-1 ontoAz=seq1×Gw
54 53 exbidv m=wff:1m1-1 ontoAz=seq1×Gmff:1w1-1 ontoAz=seq1×Gw
55 f1oeq1 f=gf:1w1-1 ontoAg:1w1-1 ontoA
56 fveq1 f=gfj=gj
57 56 csbeq1d f=gfj/kB=gj/kB
58 57 mpteq2dv f=gjfj/kB=jgj/kB
59 3 58 eqtrid f=gG=jgj/kB
60 59 seqeq3d f=gseq1×G=seq1×jgj/kB
61 60 fveq1d f=gseq1×Gw=seq1×jgj/kBw
62 61 eqeq2d f=gz=seq1×Gwz=seq1×jgj/kBw
63 55 62 anbi12d f=gf:1w1-1 ontoAz=seq1×Gwg:1w1-1 ontoAz=seq1×jgj/kBw
64 63 cbvexvw ff:1w1-1 ontoAz=seq1×Gwgg:1w1-1 ontoAz=seq1×jgj/kBw
65 54 64 bitrdi m=wff:1m1-1 ontoAz=seq1×Gmgg:1w1-1 ontoAz=seq1×jgj/kBw
66 65 cbvrexvw mff:1m1-1 ontoAz=seq1×Gmwgg:1w1-1 ontoAz=seq1×jgj/kBw
67 66 anbi2i mff:1m1-1 ontoAx=seq1×Gmmff:1m1-1 ontoAz=seq1×Gmmff:1m1-1 ontoAx=seq1×Gmwgg:1w1-1 ontoAz=seq1×jgj/kBw
68 46 48 67 3bitr4i mwfgf:1m1-1 ontoAx=seq1×Gmg:1w1-1 ontoAz=seq1×jgj/kBwmff:1m1-1 ontoAx=seq1×Gmmff:1m1-1 ontoAz=seq1×Gm
69 an4 f:1m1-1 ontoAx=seq1×Gmg:1w1-1 ontoAz=seq1×jgj/kBwf:1m1-1 ontoAg:1w1-1 ontoAx=seq1×Gmz=seq1×jgj/kBw
70 2 ad4ant14 φmwf:1m1-1 ontoAg:1w1-1 ontoAkAB
71 fveq2 j=afj=fa
72 71 csbeq1d j=afj/kB=fa/kB
73 72 cbvmptv jfj/kB=afa/kB
74 3 73 eqtri G=afa/kB
75 fveq2 j=agj=ga
76 75 csbeq1d j=agj/kB=ga/kB
77 76 cbvmptv jgj/kB=aga/kB
78 simplr φmwf:1m1-1 ontoAg:1w1-1 ontoAmw
79 simprl φmwf:1m1-1 ontoAg:1w1-1 ontoAf:1m1-1 ontoA
80 simprr φmwf:1m1-1 ontoAg:1w1-1 ontoAg:1w1-1 ontoA
81 1 70 74 77 78 79 80 prodmolem3 φmwf:1m1-1 ontoAg:1w1-1 ontoAseq1×Gm=seq1×jgj/kBw
82 eqeq12 x=seq1×Gmz=seq1×jgj/kBwx=zseq1×Gm=seq1×jgj/kBw
83 81 82 syl5ibrcom φmwf:1m1-1 ontoAg:1w1-1 ontoAx=seq1×Gmz=seq1×jgj/kBwx=z
84 83 expimpd φmwf:1m1-1 ontoAg:1w1-1 ontoAx=seq1×Gmz=seq1×jgj/kBwx=z
85 69 84 biimtrid φmwf:1m1-1 ontoAx=seq1×Gmg:1w1-1 ontoAz=seq1×jgj/kBwx=z
86 85 exlimdvv φmwfgf:1m1-1 ontoAx=seq1×Gmg:1w1-1 ontoAz=seq1×jgj/kBwx=z
87 86 rexlimdvva φmwfgf:1m1-1 ontoAx=seq1×Gmg:1w1-1 ontoAz=seq1×jgj/kBwx=z
88 68 87 biimtrrid φmff:1m1-1 ontoAx=seq1×Gmmff:1m1-1 ontoAz=seq1×Gmx=z
89 88 com12 mff:1m1-1 ontoAx=seq1×Gmmff:1m1-1 ontoAz=seq1×Gmφx=z
90 36 42 45 89 ccase mAmnmyy0seqn×Fyseqm×Fxmff:1m1-1 ontoAx=seq1×GmmAmnmyy0seqn×Fyseqm×Fzmff:1m1-1 ontoAz=seq1×Gmφx=z
91 90 com12 φmAmnmyy0seqn×Fyseqm×Fxmff:1m1-1 ontoAx=seq1×GmmAmnmyy0seqn×Fyseqm×Fzmff:1m1-1 ontoAz=seq1×Gmx=z
92 91 alrimivv φxzmAmnmyy0seqn×Fyseqm×Fxmff:1m1-1 ontoAx=seq1×GmmAmnmyy0seqn×Fyseqm×Fzmff:1m1-1 ontoAz=seq1×Gmx=z
93 breq2 x=zseqm×Fxseqm×Fz
94 93 3anbi3d x=zAmnmyy0seqn×Fyseqm×FxAmnmyy0seqn×Fyseqm×Fz
95 94 rexbidv x=zmAmnmyy0seqn×Fyseqm×FxmAmnmyy0seqn×Fyseqm×Fz
96 eqeq1 x=zx=seq1×Gmz=seq1×Gm
97 96 anbi2d x=zf:1m1-1 ontoAx=seq1×Gmf:1m1-1 ontoAz=seq1×Gm
98 97 exbidv x=zff:1m1-1 ontoAx=seq1×Gmff:1m1-1 ontoAz=seq1×Gm
99 98 rexbidv x=zmff:1m1-1 ontoAx=seq1×Gmmff:1m1-1 ontoAz=seq1×Gm
100 95 99 orbi12d x=zmAmnmyy0seqn×Fyseqm×Fxmff:1m1-1 ontoAx=seq1×GmmAmnmyy0seqn×Fyseqm×Fzmff:1m1-1 ontoAz=seq1×Gm
101 100 mo4 *xmAmnmyy0seqn×Fyseqm×Fxmff:1m1-1 ontoAx=seq1×GmxzmAmnmyy0seqn×Fyseqm×Fxmff:1m1-1 ontoAx=seq1×GmmAmnmyy0seqn×Fyseqm×Fzmff:1m1-1 ontoAz=seq1×Gmx=z
102 92 101 sylibr φ*xmAmnmyy0seqn×Fyseqm×Fxmff:1m1-1 ontoAx=seq1×Gm