Metamath Proof Explorer


Theorem ps-1

Description: The join of two atoms R .\/ S (specifying a projective geometry line) is determined uniquely by any two atoms (specifying two points) less than or equal to that join. Part of Lemma 16.4 of MaedaMaeda p. 69, showing projective space postulate PS1 in MaedaMaeda p. 67. (Contributed by NM, 15-Nov-2011)

Ref Expression
Hypotheses ps1.l ˙=K
ps1.j ˙=joinK
ps1.a A=AtomsK
Assertion ps-1 KHLPAQAPQRASAP˙Q˙R˙SP˙Q=R˙S

Proof

Step Hyp Ref Expression
1 ps1.l ˙=K
2 ps1.j ˙=joinK
3 ps1.a A=AtomsK
4 oveq1 R=PR˙S=P˙S
5 4 breq2d R=PP˙Q˙R˙SP˙Q˙P˙S
6 4 eqeq2d R=PP˙Q=R˙SP˙Q=P˙S
7 5 6 imbi12d R=PP˙Q˙R˙SP˙Q=R˙SP˙Q˙P˙SP˙Q=P˙S
8 7 eqcoms P=RP˙Q˙R˙SP˙Q=R˙SP˙Q˙P˙SP˙Q=P˙S
9 simp3 KHLPAQAPQRASAPRP˙Q˙R˙SP˙Q˙R˙S
10 simp1 KHLPAQAPQRASAKHL
11 simp21 KHLPAQAPQRASAPA
12 simp3l KHLPAQAPQRASARA
13 2 3 hlatjcom KHLPARAP˙R=R˙P
14 10 11 12 13 syl3anc KHLPAQAPQRASAP˙R=R˙P
15 14 3ad2ant1 KHLPAQAPQRASAPRP˙Q˙R˙SP˙R=R˙P
16 hllat KHLKLat
17 16 3ad2ant1 KHLPAQAPQRASAKLat
18 eqid BaseK=BaseK
19 18 3 atbase PAPBaseK
20 11 19 syl KHLPAQAPQRASAPBaseK
21 simp22 KHLPAQAPQRASAQA
22 18 3 atbase QAQBaseK
23 21 22 syl KHLPAQAPQRASAQBaseK
24 simp3r KHLPAQAPQRASASA
25 18 2 3 hlatjcl KHLRASAR˙SBaseK
26 10 12 24 25 syl3anc KHLPAQAPQRASAR˙SBaseK
27 18 1 2 latjle12 KLatPBaseKQBaseKR˙SBaseKP˙R˙SQ˙R˙SP˙Q˙R˙S
28 17 20 23 26 27 syl13anc KHLPAQAPQRASAP˙R˙SQ˙R˙SP˙Q˙R˙S
29 simpl P˙R˙SQ˙R˙SP˙R˙S
30 28 29 syl6bir KHLPAQAPQRASAP˙Q˙R˙SP˙R˙S
31 30 adantr KHLPAQAPQRASAPRP˙Q˙R˙SP˙R˙S
32 simpl1 KHLPAQAPQRASAPRKHL
33 simpl21 KHLPAQAPQRASAPRPA
34 simpl3r KHLPAQAPQRASAPRSA
35 simpl3l KHLPAQAPQRASAPRRA
36 simpr KHLPAQAPQRASAPRPR
37 1 2 3 hlatexchb1 KHLPASARAPRP˙R˙SR˙P=R˙S
38 32 33 34 35 36 37 syl131anc KHLPAQAPQRASAPRP˙R˙SR˙P=R˙S
39 31 38 sylibd KHLPAQAPQRASAPRP˙Q˙R˙SR˙P=R˙S
40 39 3impia KHLPAQAPQRASAPRP˙Q˙R˙SR˙P=R˙S
41 15 40 eqtrd KHLPAQAPQRASAPRP˙Q˙R˙SP˙R=R˙S
42 9 41 breqtrrd KHLPAQAPQRASAPRP˙Q˙R˙SP˙Q˙P˙R
43 42 3expia KHLPAQAPQRASAPRP˙Q˙R˙SP˙Q˙P˙R
44 18 2 3 hlatjcl KHLPARAP˙RBaseK
45 10 11 12 44 syl3anc KHLPAQAPQRASAP˙RBaseK
46 18 1 2 latjle12 KLatPBaseKQBaseKP˙RBaseKP˙P˙RQ˙P˙RP˙Q˙P˙R
47 17 20 23 45 46 syl13anc KHLPAQAPQRASAP˙P˙RQ˙P˙RP˙Q˙P˙R
48 simpr P˙P˙RQ˙P˙RQ˙P˙R
49 simp23 KHLPAQAPQRASAPQ
50 49 necomd KHLPAQAPQRASAQP
51 1 2 3 hlatexchb1 KHLQARAPAQPQ˙P˙RP˙Q=P˙R
52 10 21 12 11 50 51 syl131anc KHLPAQAPQRASAQ˙P˙RP˙Q=P˙R
53 48 52 imbitrid KHLPAQAPQRASAP˙P˙RQ˙P˙RP˙Q=P˙R
54 47 53 sylbird KHLPAQAPQRASAP˙Q˙P˙RP˙Q=P˙R
55 54 adantr KHLPAQAPQRASAPRP˙Q˙P˙RP˙Q=P˙R
56 43 55 syld KHLPAQAPQRASAPRP˙Q˙R˙SP˙Q=P˙R
57 56 3impia KHLPAQAPQRASAPRP˙Q˙R˙SP˙Q=P˙R
58 57 41 eqtrd KHLPAQAPQRASAPRP˙Q˙R˙SP˙Q=R˙S
59 58 3expia KHLPAQAPQRASAPRP˙Q˙R˙SP˙Q=R˙S
60 18 2 3 hlatjcl KHLPASAP˙SBaseK
61 10 11 24 60 syl3anc KHLPAQAPQRASAP˙SBaseK
62 18 1 2 latjle12 KLatPBaseKQBaseKP˙SBaseKP˙P˙SQ˙P˙SP˙Q˙P˙S
63 17 20 23 61 62 syl13anc KHLPAQAPQRASAP˙P˙SQ˙P˙SP˙Q˙P˙S
64 simpr P˙P˙SQ˙P˙SQ˙P˙S
65 63 64 syl6bir KHLPAQAPQRASAP˙Q˙P˙SQ˙P˙S
66 1 2 3 hlatexchb1 KHLQASAPAQPQ˙P˙SP˙Q=P˙S
67 10 21 24 11 50 66 syl131anc KHLPAQAPQRASAQ˙P˙SP˙Q=P˙S
68 65 67 sylibd KHLPAQAPQRASAP˙Q˙P˙SP˙Q=P˙S
69 8 59 68 pm2.61ne KHLPAQAPQRASAP˙Q˙R˙SP˙Q=R˙S
70 18 2 3 hlatjcl KHLPAQAP˙QBaseK
71 10 11 21 70 syl3anc KHLPAQAPQRASAP˙QBaseK
72 18 1 latref KLatP˙QBaseKP˙Q˙P˙Q
73 17 71 72 syl2anc KHLPAQAPQRASAP˙Q˙P˙Q
74 breq2 P˙Q=R˙SP˙Q˙P˙QP˙Q˙R˙S
75 73 74 syl5ibcom KHLPAQAPQRASAP˙Q=R˙SP˙Q˙R˙S
76 69 75 impbid KHLPAQAPQRASAP˙Q˙R˙SP˙Q=R˙S