| Step |
Hyp |
Ref |
Expression |
| 1 |
|
psgnuni.g |
|
| 2 |
|
psgnuni.t |
|
| 3 |
|
psgnuni.d |
|
| 4 |
|
psgnuni.w |
|
| 5 |
|
psgnuni.x |
|
| 6 |
|
psgnuni.e |
|
| 7 |
|
lencl |
|
| 8 |
4 7
|
syl |
|
| 9 |
8
|
nn0zd |
|
| 10 |
|
m1expcl |
|
| 11 |
9 10
|
syl |
|
| 12 |
11
|
zcnd |
|
| 13 |
|
lencl |
|
| 14 |
5 13
|
syl |
|
| 15 |
14
|
nn0zd |
|
| 16 |
|
m1expcl |
|
| 17 |
15 16
|
syl |
|
| 18 |
17
|
zcnd |
|
| 19 |
|
neg1cn |
|
| 20 |
|
neg1ne0 |
|
| 21 |
|
expne0i |
|
| 22 |
19 20 15 21
|
mp3an12i |
|
| 23 |
|
m1expaddsub |
|
| 24 |
9 15 23
|
syl2anc |
|
| 25 |
|
expsub |
|
| 26 |
19 20 25
|
mpanl12 |
|
| 27 |
9 15 26
|
syl2anc |
|
| 28 |
|
revcl |
|
| 29 |
5 28
|
syl |
|
| 30 |
|
ccatlen |
|
| 31 |
4 29 30
|
syl2anc |
|
| 32 |
|
revlen |
|
| 33 |
5 32
|
syl |
|
| 34 |
33
|
oveq2d |
|
| 35 |
31 34
|
eqtr2d |
|
| 36 |
35
|
oveq2d |
|
| 37 |
|
ccatcl |
|
| 38 |
4 29 37
|
syl2anc |
|
| 39 |
6
|
fveq2d |
|
| 40 |
|
eqid |
|
| 41 |
2 1 40
|
symgtrinv |
|
| 42 |
3 5 41
|
syl2anc |
|
| 43 |
39 42
|
eqtr2d |
|
| 44 |
43
|
oveq2d |
|
| 45 |
1
|
symggrp |
|
| 46 |
3 45
|
syl |
|
| 47 |
|
grpmnd |
|
| 48 |
3 45 47
|
3syl |
|
| 49 |
|
eqid |
|
| 50 |
2 1 49
|
symgtrf |
|
| 51 |
|
sswrd |
|
| 52 |
50 51
|
ax-mp |
|
| 53 |
52 4
|
sselid |
|
| 54 |
49
|
gsumwcl |
|
| 55 |
48 53 54
|
syl2anc |
|
| 56 |
|
eqid |
|
| 57 |
|
eqid |
|
| 58 |
49 56 57 40
|
grprinv |
|
| 59 |
46 55 58
|
syl2anc |
|
| 60 |
44 59
|
eqtrd |
|
| 61 |
52 29
|
sselid |
|
| 62 |
49 56
|
gsumccat |
|
| 63 |
48 53 61 62
|
syl3anc |
|
| 64 |
1
|
symgid |
|
| 65 |
3 64
|
syl |
|
| 66 |
60 63 65
|
3eqtr4d |
|
| 67 |
1 2 3 38 66
|
psgnunilem4 |
|
| 68 |
36 67
|
eqtrd |
|
| 69 |
24 27 68
|
3eqtr3d |
|
| 70 |
12 18 22 69
|
diveq1d |
|