Description: The analogue of the statement " 0 <_ G <_ F implies 0 <_ F - G <_ F " for finite bags. (Contributed by Mario Carneiro, 29-Dec-2014) Remove a sethood antecedent. (Revised by SN, 5-Aug-2024)
Ref | Expression | ||
---|---|---|---|
Hypothesis | psrbag.d | |
|
Assertion | psrbagcon | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psrbag.d | |
|
2 | 1 | psrbagf | |
3 | 2 | ffnd | |
4 | 3 | 3ad2ant1 | |
5 | simp2 | |
|
6 | 5 | ffnd | |
7 | id | |
|
8 | 7 3 | fndmexd | |
9 | 8 | 3ad2ant1 | |
10 | inidm | |
|
11 | 4 6 9 9 10 | offn | |
12 | eqidd | |
|
13 | eqidd | |
|
14 | 4 6 9 9 10 12 13 | ofval | |
15 | simp3 | |
|
16 | 6 4 9 9 10 13 12 | ofrfval | |
17 | 15 16 | mpbid | |
18 | 17 | r19.21bi | |
19 | 5 | ffvelcdmda | |
20 | 2 | 3ad2ant1 | |
21 | 20 | ffvelcdmda | |
22 | nn0sub | |
|
23 | 19 21 22 | syl2anc | |
24 | 18 23 | mpbid | |
25 | 14 24 | eqeltrd | |
26 | 25 | ralrimiva | |
27 | ffnfv | |
|
28 | 11 26 27 | sylanbrc | |
29 | simp1 | |
|
30 | 1 | psrbag | |
31 | 9 30 | syl | |
32 | 29 31 | mpbid | |
33 | 32 | simprd | |
34 | 19 | nn0ge0d | |
35 | 21 | nn0red | |
36 | 19 | nn0red | |
37 | 35 36 | subge02d | |
38 | 34 37 | mpbid | |
39 | 38 | ralrimiva | |
40 | 11 4 9 9 10 14 12 | ofrfval | |
41 | 39 40 | mpbird | |
42 | 1 | psrbaglesupp | |
43 | 29 28 41 42 | syl3anc | |
44 | 33 43 | ssfid | |
45 | 1 | psrbag | |
46 | 9 45 | syl | |
47 | 28 44 46 | mpbir2and | |
48 | 47 41 | jca | |