Metamath Proof Explorer


Theorem psrbagcon

Description: The analogue of the statement " 0 <_ G <_ F implies 0 <_ F - G <_ F " for finite bags. (Contributed by Mario Carneiro, 29-Dec-2014) Remove a sethood antecedent. (Revised by SN, 5-Aug-2024)

Ref Expression
Hypothesis psrbag.d D=f0I|f-1Fin
Assertion psrbagcon FDG:I0GfFFfGDFfGfF

Proof

Step Hyp Ref Expression
1 psrbag.d D=f0I|f-1Fin
2 1 psrbagf FDF:I0
3 2 ffnd FDFFnI
4 3 3ad2ant1 FDG:I0GfFFFnI
5 simp2 FDG:I0GfFG:I0
6 5 ffnd FDG:I0GfFGFnI
7 id FDFD
8 7 3 fndmexd FDIV
9 8 3ad2ant1 FDG:I0GfFIV
10 inidm II=I
11 4 6 9 9 10 offn FDG:I0GfFFfGFnI
12 eqidd FDG:I0GfFxIFx=Fx
13 eqidd FDG:I0GfFxIGx=Gx
14 4 6 9 9 10 12 13 ofval FDG:I0GfFxIFfGx=FxGx
15 simp3 FDG:I0GfFGfF
16 6 4 9 9 10 13 12 ofrfval FDG:I0GfFGfFxIGxFx
17 15 16 mpbid FDG:I0GfFxIGxFx
18 17 r19.21bi FDG:I0GfFxIGxFx
19 5 ffvelcdmda FDG:I0GfFxIGx0
20 2 3ad2ant1 FDG:I0GfFF:I0
21 20 ffvelcdmda FDG:I0GfFxIFx0
22 nn0sub Gx0Fx0GxFxFxGx0
23 19 21 22 syl2anc FDG:I0GfFxIGxFxFxGx0
24 18 23 mpbid FDG:I0GfFxIFxGx0
25 14 24 eqeltrd FDG:I0GfFxIFfGx0
26 25 ralrimiva FDG:I0GfFxIFfGx0
27 ffnfv FfG:I0FfGFnIxIFfGx0
28 11 26 27 sylanbrc FDG:I0GfFFfG:I0
29 simp1 FDG:I0GfFFD
30 1 psrbag IVFDF:I0F-1Fin
31 9 30 syl FDG:I0GfFFDF:I0F-1Fin
32 29 31 mpbid FDG:I0GfFF:I0F-1Fin
33 32 simprd FDG:I0GfFF-1Fin
34 19 nn0ge0d FDG:I0GfFxI0Gx
35 21 nn0red FDG:I0GfFxIFx
36 19 nn0red FDG:I0GfFxIGx
37 35 36 subge02d FDG:I0GfFxI0GxFxGxFx
38 34 37 mpbid FDG:I0GfFxIFxGxFx
39 38 ralrimiva FDG:I0GfFxIFxGxFx
40 11 4 9 9 10 14 12 ofrfval FDG:I0GfFFfGfFxIFxGxFx
41 39 40 mpbird FDG:I0GfFFfGfF
42 1 psrbaglesupp FDFfG:I0FfGfFFfG-1F-1
43 29 28 41 42 syl3anc FDG:I0GfFFfG-1F-1
44 33 43 ssfid FDG:I0GfFFfG-1Fin
45 1 psrbag IVFfGDFfG:I0FfG-1Fin
46 9 45 syl FDG:I0GfFFfGDFfG:I0FfG-1Fin
47 28 44 46 mpbir2and FDG:I0GfFFfGD
48 47 41 jca FDG:I0GfFFfGDFfGfF