Metamath Proof Explorer


Theorem pwssplit3

Description: Splitting for structure powers, part 3: restriction is a module homomorphism. (Contributed by Stefan O'Rear, 24-Jan-2015)

Ref Expression
Hypotheses pwssplit1.y Y=W𝑠U
pwssplit1.z Z=W𝑠V
pwssplit1.b B=BaseY
pwssplit1.c C=BaseZ
pwssplit1.f F=xBxV
Assertion pwssplit3 WLModUXVUFYLMHomZ

Proof

Step Hyp Ref Expression
1 pwssplit1.y Y=W𝑠U
2 pwssplit1.z Z=W𝑠V
3 pwssplit1.b B=BaseY
4 pwssplit1.c C=BaseZ
5 pwssplit1.f F=xBxV
6 eqid Y=Y
7 eqid Z=Z
8 eqid ScalarY=ScalarY
9 eqid ScalarZ=ScalarZ
10 eqid BaseScalarY=BaseScalarY
11 simp1 WLModUXVUWLMod
12 simp2 WLModUXVUUX
13 1 pwslmod WLModUXYLMod
14 11 12 13 syl2anc WLModUXVUYLMod
15 simp3 WLModUXVUVU
16 12 15 ssexd WLModUXVUVV
17 2 pwslmod WLModVVZLMod
18 11 16 17 syl2anc WLModUXVUZLMod
19 eqid ScalarW=ScalarW
20 2 19 pwssca WLModVVScalarW=ScalarZ
21 11 16 20 syl2anc WLModUXVUScalarW=ScalarZ
22 1 19 pwssca WLModUXScalarW=ScalarY
23 11 12 22 syl2anc WLModUXVUScalarW=ScalarY
24 21 23 eqtr3d WLModUXVUScalarZ=ScalarY
25 lmodgrp WLModWGrp
26 1 2 3 4 5 pwssplit2 WGrpUXVUFYGrpHomZ
27 25 26 syl3an1 WLModUXVUFYGrpHomZ
28 snex aV
29 xpexg UXaVU×aV
30 12 28 29 sylancl WLModUXVUU×aV
31 vex bV
32 offres U×aVbVU×aWfbV=U×aVWfbV
33 30 31 32 sylancl WLModUXVUU×aWfbV=U×aVWfbV
34 33 adantr WLModUXVUaBaseScalarYbBU×aWfbV=U×aVWfbV
35 xpssres VUU×aV=V×a
36 35 3ad2ant3 WLModUXVUU×aV=V×a
37 36 adantr WLModUXVUaBaseScalarYbBU×aV=V×a
38 37 oveq1d WLModUXVUaBaseScalarYbBU×aVWfbV=V×aWfbV
39 34 38 eqtrd WLModUXVUaBaseScalarYbBU×aWfbV=V×aWfbV
40 eqid W=W
41 eqid BaseScalarW=BaseScalarW
42 simpl1 WLModUXVUaBaseScalarYbBWLMod
43 simpl2 WLModUXVUaBaseScalarYbBUX
44 23 fveq2d WLModUXVUBaseScalarW=BaseScalarY
45 44 eleq2d WLModUXVUaBaseScalarWaBaseScalarY
46 45 biimpar WLModUXVUaBaseScalarYaBaseScalarW
47 46 adantrr WLModUXVUaBaseScalarYbBaBaseScalarW
48 simprr WLModUXVUaBaseScalarYbBbB
49 1 3 40 6 19 41 42 43 47 48 pwsvscafval WLModUXVUaBaseScalarYbBaYb=U×aWfb
50 49 reseq1d WLModUXVUaBaseScalarYbBaYbV=U×aWfbV
51 5 fvtresfn bBFb=bV
52 51 ad2antll WLModUXVUaBaseScalarYbBFb=bV
53 52 oveq2d WLModUXVUaBaseScalarYbBV×aWfFb=V×aWfbV
54 39 50 53 3eqtr4d WLModUXVUaBaseScalarYbBaYbV=V×aWfFb
55 3 8 6 10 lmodvscl YLModaBaseScalarYbBaYbB
56 55 3expb YLModaBaseScalarYbBaYbB
57 14 56 sylan WLModUXVUaBaseScalarYbBaYbB
58 5 fvtresfn aYbBFaYb=aYbV
59 57 58 syl WLModUXVUaBaseScalarYbBFaYb=aYbV
60 16 adantr WLModUXVUaBaseScalarYbBVV
61 1 2 3 4 5 pwssplit0 WLModUXVUF:BC
62 61 ffvelcdmda WLModUXVUbBFbC
63 62 adantrl WLModUXVUaBaseScalarYbBFbC
64 2 4 40 7 19 41 42 60 47 63 pwsvscafval WLModUXVUaBaseScalarYbBaZFb=V×aWfFb
65 54 59 64 3eqtr4d WLModUXVUaBaseScalarYbBFaYb=aZFb
66 3 6 7 8 9 10 14 18 24 27 65 islmhmd WLModUXVUFYLMHomZ