Description: Splitting for structure powers, part 3: restriction is a module homomorphism. (Contributed by Stefan O'Rear, 24-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | pwssplit1.y | |
|
pwssplit1.z | |
||
pwssplit1.b | |
||
pwssplit1.c | |
||
pwssplit1.f | |
||
Assertion | pwssplit3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwssplit1.y | |
|
2 | pwssplit1.z | |
|
3 | pwssplit1.b | |
|
4 | pwssplit1.c | |
|
5 | pwssplit1.f | |
|
6 | eqid | |
|
7 | eqid | |
|
8 | eqid | |
|
9 | eqid | |
|
10 | eqid | |
|
11 | simp1 | |
|
12 | simp2 | |
|
13 | 1 | pwslmod | |
14 | 11 12 13 | syl2anc | |
15 | simp3 | |
|
16 | 12 15 | ssexd | |
17 | 2 | pwslmod | |
18 | 11 16 17 | syl2anc | |
19 | eqid | |
|
20 | 2 19 | pwssca | |
21 | 11 16 20 | syl2anc | |
22 | 1 19 | pwssca | |
23 | 11 12 22 | syl2anc | |
24 | 21 23 | eqtr3d | |
25 | lmodgrp | |
|
26 | 1 2 3 4 5 | pwssplit2 | |
27 | 25 26 | syl3an1 | |
28 | snex | |
|
29 | xpexg | |
|
30 | 12 28 29 | sylancl | |
31 | vex | |
|
32 | offres | |
|
33 | 30 31 32 | sylancl | |
34 | 33 | adantr | |
35 | xpssres | |
|
36 | 35 | 3ad2ant3 | |
37 | 36 | adantr | |
38 | 37 | oveq1d | |
39 | 34 38 | eqtrd | |
40 | eqid | |
|
41 | eqid | |
|
42 | simpl1 | |
|
43 | simpl2 | |
|
44 | 23 | fveq2d | |
45 | 44 | eleq2d | |
46 | 45 | biimpar | |
47 | 46 | adantrr | |
48 | simprr | |
|
49 | 1 3 40 6 19 41 42 43 47 48 | pwsvscafval | |
50 | 49 | reseq1d | |
51 | 5 | fvtresfn | |
52 | 51 | ad2antll | |
53 | 52 | oveq2d | |
54 | 39 50 53 | 3eqtr4d | |
55 | 3 8 6 10 | lmodvscl | |
56 | 55 | 3expb | |
57 | 14 56 | sylan | |
58 | 5 | fvtresfn | |
59 | 57 58 | syl | |
60 | 16 | adantr | |
61 | 1 2 3 4 5 | pwssplit0 | |
62 | 61 | ffvelcdmda | |
63 | 62 | adantrl | |
64 | 2 4 40 7 19 41 42 60 47 63 | pwsvscafval | |
65 | 54 59 64 | 3eqtr4d | |
66 | 3 6 7 8 9 10 14 18 24 27 65 | islmhmd | |