Description: Lemma for pythagtrip . Show that M (which will eventually be closely related to the m in the final statement) is a natural. (Contributed by Scott Fenton, 17-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | pythagtriplem11.1 | |
|
Assertion | pythagtriplem11 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pythagtriplem11.1 | |
|
2 | pythagtriplem9 | |
|
3 | 2 | nnzd | |
4 | simp3r | |
|
5 | 2z | |
|
6 | nnz | |
|
7 | 6 | 3ad2ant3 | |
8 | nnz | |
|
9 | 8 | 3ad2ant2 | |
10 | 7 9 | zaddcld | |
11 | 10 | 3ad2ant1 | |
12 | nnz | |
|
13 | 12 | 3ad2ant1 | |
14 | 13 | 3ad2ant1 | |
15 | dvdsgcdb | |
|
16 | 5 11 14 15 | mp3an2i | |
17 | 16 | biimpar | |
18 | 17 | simprd | |
19 | 4 18 | mtand | |
20 | pythagtriplem7 | |
|
21 | 20 | breq2d | |
22 | 19 21 | mtbird | |
23 | pythagtriplem8 | |
|
24 | 23 | nnzd | |
25 | 7 9 | zsubcld | |
26 | 25 | 3ad2ant1 | |
27 | dvdsgcdb | |
|
28 | 5 26 14 27 | mp3an2i | |
29 | 28 | biimpar | |
30 | 29 | simprd | |
31 | 4 30 | mtand | |
32 | pythagtriplem6 | |
|
33 | 32 | breq2d | |
34 | 31 33 | mtbird | |
35 | opoe | |
|
36 | 3 22 24 34 35 | syl22anc | |
37 | 2 23 | nnaddcld | |
38 | 37 | nnzd | |
39 | evend2 | |
|
40 | 38 39 | syl | |
41 | 36 40 | mpbid | |
42 | 2 | nnred | |
43 | 23 | nnred | |
44 | 2 | nngt0d | |
45 | 23 | nngt0d | |
46 | 42 43 44 45 | addgt0d | |
47 | 37 | nnred | |
48 | halfpos2 | |
|
49 | 47 48 | syl | |
50 | 46 49 | mpbid | |
51 | elnnz | |
|
52 | 41 50 51 | sylanbrc | |
53 | 1 52 | eqeltrid | |