Metamath Proof Explorer


Theorem pythagtriplem11

Description: Lemma for pythagtrip . Show that M (which will eventually be closely related to the m in the final statement) is a natural. (Contributed by Scott Fenton, 17-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Hypothesis pythagtriplem11.1 M=C+B+CB2
Assertion pythagtriplem11 ABCA2+B2=C2AgcdB=1¬2AM

Proof

Step Hyp Ref Expression
1 pythagtriplem11.1 M=C+B+CB2
2 pythagtriplem9 ABCA2+B2=C2AgcdB=1¬2AC+B
3 2 nnzd ABCA2+B2=C2AgcdB=1¬2AC+B
4 simp3r ABCA2+B2=C2AgcdB=1¬2A¬2A
5 2z 2
6 nnz CC
7 6 3ad2ant3 ABCC
8 nnz BB
9 8 3ad2ant2 ABCB
10 7 9 zaddcld ABCC+B
11 10 3ad2ant1 ABCA2+B2=C2AgcdB=1¬2AC+B
12 nnz AA
13 12 3ad2ant1 ABCA
14 13 3ad2ant1 ABCA2+B2=C2AgcdB=1¬2AA
15 dvdsgcdb 2C+BA2C+B2A2C+BgcdA
16 5 11 14 15 mp3an2i ABCA2+B2=C2AgcdB=1¬2A2C+B2A2C+BgcdA
17 16 biimpar ABCA2+B2=C2AgcdB=1¬2A2C+BgcdA2C+B2A
18 17 simprd ABCA2+B2=C2AgcdB=1¬2A2C+BgcdA2A
19 4 18 mtand ABCA2+B2=C2AgcdB=1¬2A¬2C+BgcdA
20 pythagtriplem7 ABCA2+B2=C2AgcdB=1¬2AC+B=C+BgcdA
21 20 breq2d ABCA2+B2=C2AgcdB=1¬2A2C+B2C+BgcdA
22 19 21 mtbird ABCA2+B2=C2AgcdB=1¬2A¬2C+B
23 pythagtriplem8 ABCA2+B2=C2AgcdB=1¬2ACB
24 23 nnzd ABCA2+B2=C2AgcdB=1¬2ACB
25 7 9 zsubcld ABCCB
26 25 3ad2ant1 ABCA2+B2=C2AgcdB=1¬2ACB
27 dvdsgcdb 2CBA2CB2A2CBgcdA
28 5 26 14 27 mp3an2i ABCA2+B2=C2AgcdB=1¬2A2CB2A2CBgcdA
29 28 biimpar ABCA2+B2=C2AgcdB=1¬2A2CBgcdA2CB2A
30 29 simprd ABCA2+B2=C2AgcdB=1¬2A2CBgcdA2A
31 4 30 mtand ABCA2+B2=C2AgcdB=1¬2A¬2CBgcdA
32 pythagtriplem6 ABCA2+B2=C2AgcdB=1¬2ACB=CBgcdA
33 32 breq2d ABCA2+B2=C2AgcdB=1¬2A2CB2CBgcdA
34 31 33 mtbird ABCA2+B2=C2AgcdB=1¬2A¬2CB
35 opoe C+B¬2C+BCB¬2CB2C+B+CB
36 3 22 24 34 35 syl22anc ABCA2+B2=C2AgcdB=1¬2A2C+B+CB
37 2 23 nnaddcld ABCA2+B2=C2AgcdB=1¬2AC+B+CB
38 37 nnzd ABCA2+B2=C2AgcdB=1¬2AC+B+CB
39 evend2 C+B+CB2C+B+CBC+B+CB2
40 38 39 syl ABCA2+B2=C2AgcdB=1¬2A2C+B+CBC+B+CB2
41 36 40 mpbid ABCA2+B2=C2AgcdB=1¬2AC+B+CB2
42 2 nnred ABCA2+B2=C2AgcdB=1¬2AC+B
43 23 nnred ABCA2+B2=C2AgcdB=1¬2ACB
44 2 nngt0d ABCA2+B2=C2AgcdB=1¬2A0<C+B
45 23 nngt0d ABCA2+B2=C2AgcdB=1¬2A0<CB
46 42 43 44 45 addgt0d ABCA2+B2=C2AgcdB=1¬2A0<C+B+CB
47 37 nnred ABCA2+B2=C2AgcdB=1¬2AC+B+CB
48 halfpos2 C+B+CB0<C+B+CB0<C+B+CB2
49 47 48 syl ABCA2+B2=C2AgcdB=1¬2A0<C+B+CB0<C+B+CB2
50 46 49 mpbid ABCA2+B2=C2AgcdB=1¬2A0<C+B+CB2
51 elnnz C+B+CB2C+B+CB20<C+B+CB2
52 41 50 51 sylanbrc ABCA2+B2=C2AgcdB=1¬2AC+B+CB2
53 1 52 eqeltrid ABCA2+B2=C2AgcdB=1¬2AM