Description: By using induction on N , we show a long-range inequality coming from the triangle inequality. (Contributed by Mario Carneiro, 10-Sep-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | qrng.q | |
|
qabsabv.a | |
||
Assertion | qabvle | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qrng.q | |
|
2 | qabsabv.a | |
|
3 | fveq2 | |
|
4 | id | |
|
5 | 3 4 | breq12d | |
6 | 5 | imbi2d | |
7 | fveq2 | |
|
8 | id | |
|
9 | 7 8 | breq12d | |
10 | 9 | imbi2d | |
11 | fveq2 | |
|
12 | id | |
|
13 | 11 12 | breq12d | |
14 | 13 | imbi2d | |
15 | fveq2 | |
|
16 | id | |
|
17 | 15 16 | breq12d | |
18 | 17 | imbi2d | |
19 | 1 | qrng0 | |
20 | 2 19 | abv0 | |
21 | 0le0 | |
|
22 | 20 21 | eqbrtrdi | |
23 | nn0p1nn | |
|
24 | 23 | ad2antrl | |
25 | nnq | |
|
26 | 24 25 | syl | |
27 | 1 | qrngbas | |
28 | 2 27 | abvcl | |
29 | 26 28 | syldan | |
30 | nn0z | |
|
31 | 30 | ad2antrl | |
32 | zq | |
|
33 | 31 32 | syl | |
34 | 2 27 | abvcl | |
35 | 33 34 | syldan | |
36 | peano2re | |
|
37 | 35 36 | syl | |
38 | 31 | zred | |
39 | peano2re | |
|
40 | 38 39 | syl | |
41 | simpl | |
|
42 | 1z | |
|
43 | zq | |
|
44 | 42 43 | mp1i | |
45 | qex | |
|
46 | cnfldadd | |
|
47 | 1 46 | ressplusg | |
48 | 45 47 | ax-mp | |
49 | 2 27 48 | abvtri | |
50 | 41 33 44 49 | syl3anc | |
51 | ax-1ne0 | |
|
52 | 1 | qrng1 | |
53 | 2 52 19 | abv1z | |
54 | 51 53 | mpan2 | |
55 | 54 | adantr | |
56 | 55 | oveq2d | |
57 | 50 56 | breqtrd | |
58 | 1red | |
|
59 | simprr | |
|
60 | 35 38 58 59 | leadd1dd | |
61 | 29 37 40 57 60 | letrd | |
62 | 61 | expr | |
63 | 62 | expcom | |
64 | 63 | a2d | |
65 | 6 10 14 18 22 64 | nn0ind | |
66 | 65 | impcom | |