Metamath Proof Explorer


Theorem qabvle

Description: By using induction on N , we show a long-range inequality coming from the triangle inequality. (Contributed by Mario Carneiro, 10-Sep-2014)

Ref Expression
Hypotheses qrng.q Q=fld𝑠
qabsabv.a A=AbsValQ
Assertion qabvle FAN0FNN

Proof

Step Hyp Ref Expression
1 qrng.q Q=fld𝑠
2 qabsabv.a A=AbsValQ
3 fveq2 k=0Fk=F0
4 id k=0k=0
5 3 4 breq12d k=0FkkF00
6 5 imbi2d k=0FAFkkFAF00
7 fveq2 k=nFk=Fn
8 id k=nk=n
9 7 8 breq12d k=nFkkFnn
10 9 imbi2d k=nFAFkkFAFnn
11 fveq2 k=n+1Fk=Fn+1
12 id k=n+1k=n+1
13 11 12 breq12d k=n+1FkkFn+1n+1
14 13 imbi2d k=n+1FAFkkFAFn+1n+1
15 fveq2 k=NFk=FN
16 id k=Nk=N
17 15 16 breq12d k=NFkkFNN
18 17 imbi2d k=NFAFkkFAFNN
19 1 qrng0 0=0Q
20 2 19 abv0 FAF0=0
21 0le0 00
22 20 21 eqbrtrdi FAF00
23 nn0p1nn n0n+1
24 23 ad2antrl FAn0Fnnn+1
25 nnq n+1n+1
26 24 25 syl FAn0Fnnn+1
27 1 qrngbas =BaseQ
28 2 27 abvcl FAn+1Fn+1
29 26 28 syldan FAn0FnnFn+1
30 nn0z n0n
31 30 ad2antrl FAn0Fnnn
32 zq nn
33 31 32 syl FAn0Fnnn
34 2 27 abvcl FAnFn
35 33 34 syldan FAn0FnnFn
36 peano2re FnFn+1
37 35 36 syl FAn0FnnFn+1
38 31 zred FAn0Fnnn
39 peano2re nn+1
40 38 39 syl FAn0Fnnn+1
41 simpl FAn0FnnFA
42 1z 1
43 zq 11
44 42 43 mp1i FAn0Fnn1
45 qex V
46 cnfldadd +=+fld
47 1 46 ressplusg V+=+Q
48 45 47 ax-mp +=+Q
49 2 27 48 abvtri FAn1Fn+1Fn+F1
50 41 33 44 49 syl3anc FAn0FnnFn+1Fn+F1
51 ax-1ne0 10
52 1 qrng1 1=1Q
53 2 52 19 abv1z FA10F1=1
54 51 53 mpan2 FAF1=1
55 54 adantr FAn0FnnF1=1
56 55 oveq2d FAn0FnnFn+F1=Fn+1
57 50 56 breqtrd FAn0FnnFn+1Fn+1
58 1red FAn0Fnn1
59 simprr FAn0FnnFnn
60 35 38 58 59 leadd1dd FAn0FnnFn+1n+1
61 29 37 40 57 60 letrd FAn0FnnFn+1n+1
62 61 expr FAn0FnnFn+1n+1
63 62 expcom n0FAFnnFn+1n+1
64 63 a2d n0FAFnnFAFn+1n+1
65 6 10 14 18 22 64 nn0ind N0FAFNN
66 65 impcom FAN0FNN