| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elq |
|
| 2 |
|
drngring |
|
| 3 |
2
|
ad2antlr |
|
| 4 |
|
zsssubrg |
|
| 5 |
4
|
ad2antrr |
|
| 6 |
|
eqid |
|
| 7 |
6
|
subrgbas |
|
| 8 |
7
|
ad2antrr |
|
| 9 |
5 8
|
sseqtrd |
|
| 10 |
|
simprl |
|
| 11 |
9 10
|
sseldd |
|
| 12 |
|
nnz |
|
| 13 |
12
|
ad2antll |
|
| 14 |
9 13
|
sseldd |
|
| 15 |
|
nnne0 |
|
| 16 |
15
|
ad2antll |
|
| 17 |
|
cnfld0 |
|
| 18 |
6 17
|
subrg0 |
|
| 19 |
18
|
ad2antrr |
|
| 20 |
16 19
|
neeqtrd |
|
| 21 |
|
eqid |
|
| 22 |
|
eqid |
|
| 23 |
|
eqid |
|
| 24 |
21 22 23
|
drngunit |
|
| 25 |
24
|
ad2antlr |
|
| 26 |
14 20 25
|
mpbir2and |
|
| 27 |
|
eqid |
|
| 28 |
21 22 27
|
dvrcl |
|
| 29 |
3 11 26 28
|
syl3anc |
|
| 30 |
|
simpll |
|
| 31 |
5 10
|
sseldd |
|
| 32 |
|
cnflddiv |
|
| 33 |
6 32 22 27
|
subrgdv |
|
| 34 |
30 31 26 33
|
syl3anc |
|
| 35 |
29 34 8
|
3eltr4d |
|
| 36 |
|
eleq1 |
|
| 37 |
35 36
|
syl5ibrcom |
|
| 38 |
37
|
rexlimdvva |
|
| 39 |
1 38
|
biimtrid |
|
| 40 |
39
|
ssrdv |
|