Description: If F is a surjective continuous open map, then it is a quotient map. (An open map is a function that maps open sets to open sets.) (Contributed by Mario Carneiro, 24-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | qtopomap.4 | |
|
qtopomap.5 | |
||
qtopomap.6 | |
||
qtopomap.7 | |
||
Assertion | qtopomap | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qtopomap.4 | |
|
2 | qtopomap.5 | |
|
3 | qtopomap.6 | |
|
4 | qtopomap.7 | |
|
5 | qtopss | |
|
6 | 2 1 3 5 | syl3anc | |
7 | cntop1 | |
|
8 | 2 7 | syl | |
9 | toptopon2 | |
|
10 | 8 9 | sylib | |
11 | cnf2 | |
|
12 | 10 1 2 11 | syl3anc | |
13 | 12 | ffnd | |
14 | df-fo | |
|
15 | 13 3 14 | sylanbrc | |
16 | elqtop3 | |
|
17 | 10 15 16 | syl2anc | |
18 | foimacnv | |
|
19 | 15 18 | sylan | |
20 | 19 | adantrr | |
21 | imaeq2 | |
|
22 | 21 | eleq1d | |
23 | 4 | ralrimiva | |
24 | 23 | adantr | |
25 | simprr | |
|
26 | 22 24 25 | rspcdva | |
27 | 20 26 | eqeltrrd | |
28 | 27 | ex | |
29 | 17 28 | sylbid | |
30 | 29 | ssrdv | |
31 | 6 30 | eqssd | |