Metamath Proof Explorer


Theorem qtopomap

Description: If F is a surjective continuous open map, then it is a quotient map. (An open map is a function that maps open sets to open sets.) (Contributed by Mario Carneiro, 24-Mar-2015)

Ref Expression
Hypotheses qtopomap.4 φKTopOnY
qtopomap.5 φFJCnK
qtopomap.6 φranF=Y
qtopomap.7 φxJFxK
Assertion qtopomap φK=JqTopF

Proof

Step Hyp Ref Expression
1 qtopomap.4 φKTopOnY
2 qtopomap.5 φFJCnK
3 qtopomap.6 φranF=Y
4 qtopomap.7 φxJFxK
5 qtopss FJCnKKTopOnYranF=YKJqTopF
6 2 1 3 5 syl3anc φKJqTopF
7 cntop1 FJCnKJTop
8 2 7 syl φJTop
9 toptopon2 JTopJTopOnJ
10 8 9 sylib φJTopOnJ
11 cnf2 JTopOnJKTopOnYFJCnKF:JY
12 10 1 2 11 syl3anc φF:JY
13 12 ffnd φFFnJ
14 df-fo F:JontoYFFnJranF=Y
15 13 3 14 sylanbrc φF:JontoY
16 elqtop3 JTopOnJF:JontoYyJqTopFyYF-1yJ
17 10 15 16 syl2anc φyJqTopFyYF-1yJ
18 foimacnv F:JontoYyYFF-1y=y
19 15 18 sylan φyYFF-1y=y
20 19 adantrr φyYF-1yJFF-1y=y
21 imaeq2 x=F-1yFx=FF-1y
22 21 eleq1d x=F-1yFxKFF-1yK
23 4 ralrimiva φxJFxK
24 23 adantr φyYF-1yJxJFxK
25 simprr φyYF-1yJF-1yJ
26 22 24 25 rspcdva φyYF-1yJFF-1yK
27 20 26 eqeltrrd φyYF-1yJyK
28 27 ex φyYF-1yJyK
29 17 28 sylbid φyJqTopFyK
30 29 ssrdv φJqTopFK
31 6 30 eqssd φK=JqTopF