Metamath Proof Explorer


Theorem qtopcmap

Description: If F is a surjective continuous closed map, then it is a quotient map. (A closed map is a function that maps closed sets to closed sets.) (Contributed by Mario Carneiro, 24-Mar-2015)

Ref Expression
Hypotheses qtopomap.4 φKTopOnY
qtopomap.5 φFJCnK
qtopomap.6 φranF=Y
qtopcmap.7 φxClsdJFxClsdK
Assertion qtopcmap φK=JqTopF

Proof

Step Hyp Ref Expression
1 qtopomap.4 φKTopOnY
2 qtopomap.5 φFJCnK
3 qtopomap.6 φranF=Y
4 qtopcmap.7 φxClsdJFxClsdK
5 qtopss FJCnKKTopOnYranF=YKJqTopF
6 2 1 3 5 syl3anc φKJqTopF
7 cntop1 FJCnKJTop
8 2 7 syl φJTop
9 toptopon2 JTopJTopOnJ
10 8 9 sylib φJTopOnJ
11 cnf2 JTopOnJKTopOnYFJCnKF:JY
12 10 1 2 11 syl3anc φF:JY
13 12 ffnd φFFnJ
14 df-fo F:JontoYFFnJranF=Y
15 13 3 14 sylanbrc φF:JontoY
16 eqid J=J
17 16 elqtop2 JTopF:JontoYyJqTopFyYF-1yJ
18 8 15 17 syl2anc φyJqTopFyYF-1yJ
19 15 adantr φyYF-1yJF:JontoY
20 difss YyY
21 foimacnv F:JontoYYyYFF-1Yy=Yy
22 19 20 21 sylancl φyYF-1yJFF-1Yy=Yy
23 1 adantr φyYF-1yJKTopOnY
24 toponuni KTopOnYY=K
25 23 24 syl φyYF-1yJY=K
26 25 difeq1d φyYF-1yJYy=Ky
27 22 26 eqtrd φyYF-1yJFF-1Yy=Ky
28 imaeq2 x=F-1YyFx=FF-1Yy
29 28 eleq1d x=F-1YyFxClsdKFF-1YyClsdK
30 4 ralrimiva φxClsdJFxClsdK
31 30 adantr φyYF-1yJxClsdJFxClsdK
32 fofun F:JontoYFunF
33 funcnvcnv FunFFunF-1-1
34 imadif FunF-1-1F-1Yy=F-1YF-1y
35 19 32 33 34 4syl φyYF-1yJF-1Yy=F-1YF-1y
36 12 adantr φyYF-1yJF:JY
37 fimacnv F:JYF-1Y=J
38 36 37 syl φyYF-1yJF-1Y=J
39 38 difeq1d φyYF-1yJF-1YF-1y=JF-1y
40 35 39 eqtrd φyYF-1yJF-1Yy=JF-1y
41 8 adantr φyYF-1yJJTop
42 simprr φyYF-1yJF-1yJ
43 16 opncld JTopF-1yJJF-1yClsdJ
44 41 42 43 syl2anc φyYF-1yJJF-1yClsdJ
45 40 44 eqeltrd φyYF-1yJF-1YyClsdJ
46 29 31 45 rspcdva φyYF-1yJFF-1YyClsdK
47 27 46 eqeltrrd φyYF-1yJKyClsdK
48 topontop KTopOnYKTop
49 23 48 syl φyYF-1yJKTop
50 simprl φyYF-1yJyY
51 50 25 sseqtrd φyYF-1yJyK
52 eqid K=K
53 52 isopn2 KTopyKyKKyClsdK
54 49 51 53 syl2anc φyYF-1yJyKKyClsdK
55 47 54 mpbird φyYF-1yJyK
56 55 ex φyYF-1yJyK
57 18 56 sylbid φyJqTopFyK
58 57 ssrdv φJqTopFK
59 6 58 eqssd φK=JqTopF