Metamath Proof Explorer


Theorem quad2

Description: The quadratic equation, without specifying the particular branch D to the square root. (Contributed by Mario Carneiro, 23-Apr-2015)

Ref Expression
Hypotheses quad.a φ A
quad.z φ A 0
quad.b φ B
quad.c φ C
quad.x φ X
quad2.d φ D
quad2.2 φ D 2 = B 2 4 A C
Assertion quad2 φ A X 2 + B X + C = 0 X = - B + D 2 A X = - B - D 2 A

Proof

Step Hyp Ref Expression
1 quad.a φ A
2 quad.z φ A 0
3 quad.b φ B
4 quad.c φ C
5 quad.x φ X
6 quad2.d φ D
7 quad2.2 φ D 2 = B 2 4 A C
8 2cn 2
9 mulcl 2 A 2 A
10 8 1 9 sylancr φ 2 A
11 10 5 mulcld φ 2 A X
12 11 3 addcld φ 2 A X + B
13 12 sqcld φ 2 A X + B 2
14 6 sqcld φ D 2
15 13 14 subeq0ad φ 2 A X + B 2 D 2 = 0 2 A X + B 2 = D 2
16 5 sqcld φ X 2
17 1 16 mulcld φ A X 2
18 3 5 mulcld φ B X
19 18 4 addcld φ B X + C
20 17 19 addcld φ A X 2 + B X + C
21 0cnd φ 0
22 4cn 4
23 mulcl 4 A 4 A
24 22 1 23 sylancr φ 4 A
25 22 a1i φ 4
26 4ne0 4 0
27 26 a1i φ 4 0
28 25 1 27 2 mulne0d φ 4 A 0
29 20 21 24 28 mulcand φ 4 A A X 2 + B X + C = 4 A 0 A X 2 + B X + C = 0
30 11 sqcld φ 2 A X 2
31 11 3 mulcld φ 2 A X B
32 mulcl 2 2 A X B 2 2 A X B
33 8 31 32 sylancr φ 2 2 A X B
34 1 4 mulcld φ A C
35 mulcl 4 A C 4 A C
36 22 34 35 sylancr φ 4 A C
37 30 33 36 addassd φ 2 A X 2 + 2 2 A X B + 4 A C = 2 A X 2 + 2 2 A X B + 4 A C
38 3 sqcld φ B 2
39 30 33 addcld φ 2 A X 2 + 2 2 A X B
40 38 39 36 pnncand φ B 2 + 2 A X 2 + 2 2 A X B - B 2 4 A C = 2 A X 2 + 2 2 A X B + 4 A C
41 10 5 sqmuld φ 2 A X 2 = 2 A 2 X 2
42 sq2 2 2 = 4
43 42 a1i φ 2 2 = 4
44 1 sqvald φ A 2 = A A
45 43 44 oveq12d φ 2 2 A 2 = 4 A A
46 sqmul 2 A 2 A 2 = 2 2 A 2
47 8 1 46 sylancr φ 2 A 2 = 2 2 A 2
48 25 1 1 mulassd φ 4 A A = 4 A A
49 45 47 48 3eqtr4d φ 2 A 2 = 4 A A
50 49 oveq1d φ 2 A 2 X 2 = 4 A A X 2
51 24 1 16 mulassd φ 4 A A X 2 = 4 A A X 2
52 41 50 51 3eqtrrd φ 4 A A X 2 = 2 A X 2
53 24 18 4 adddid φ 4 A B X + C = 4 A B X + 4 A C
54 2t2e4 2 2 = 4
55 54 oveq1i 2 2 A = 4 A
56 8 a1i φ 2
57 56 56 1 mulassd φ 2 2 A = 2 2 A
58 55 57 syl5eqr φ 4 A = 2 2 A
59 58 oveq1d φ 4 A B = 2 2 A B
60 56 10 3 mulassd φ 2 2 A B = 2 2 A B
61 59 60 eqtrd φ 4 A B = 2 2 A B
62 61 oveq1d φ 4 A B X = 2 2 A B X
63 10 3 mulcld φ 2 A B
64 56 63 5 mulassd φ 2 2 A B X = 2 2 A B X
65 62 64 eqtrd φ 4 A B X = 2 2 A B X
66 24 3 5 mulassd φ 4 A B X = 4 A B X
67 10 3 5 mul32d φ 2 A B X = 2 A X B
68 67 oveq2d φ 2 2 A B X = 2 2 A X B
69 65 66 68 3eqtr3d φ 4 A B X = 2 2 A X B
70 25 1 4 mulassd φ 4 A C = 4 A C
71 69 70 oveq12d φ 4 A B X + 4 A C = 2 2 A X B + 4 A C
72 53 71 eqtrd φ 4 A B X + C = 2 2 A X B + 4 A C
73 52 72 oveq12d φ 4 A A X 2 + 4 A B X + C = 2 A X 2 + 2 2 A X B + 4 A C
74 37 40 73 3eqtr4rd φ 4 A A X 2 + 4 A B X + C = B 2 + 2 A X 2 + 2 2 A X B - B 2 4 A C
75 24 17 19 adddid φ 4 A A X 2 + B X + C = 4 A A X 2 + 4 A B X + C
76 binom2 2 A X B 2 A X + B 2 = 2 A X 2 + 2 2 A X B + B 2
77 11 3 76 syl2anc φ 2 A X + B 2 = 2 A X 2 + 2 2 A X B + B 2
78 39 38 77 comraddd φ 2 A X + B 2 = B 2 + 2 A X 2 + 2 2 A X B
79 78 7 oveq12d φ 2 A X + B 2 D 2 = B 2 + 2 A X 2 + 2 2 A X B - B 2 4 A C
80 74 75 79 3eqtr4d φ 4 A A X 2 + B X + C = 2 A X + B 2 D 2
81 24 mul01d φ 4 A 0 = 0
82 80 81 eqeq12d φ 4 A A X 2 + B X + C = 4 A 0 2 A X + B 2 D 2 = 0
83 29 82 bitr3d φ A X 2 + B X + C = 0 2 A X + B 2 D 2 = 0
84 11 3 subnegd φ 2 A X B = 2 A X + B
85 84 oveq1d φ 2 A X B 2 = 2 A X + B 2
86 85 eqeq1d φ 2 A X B 2 = D 2 2 A X + B 2 = D 2
87 15 83 86 3bitr4d φ A X 2 + B X + C = 0 2 A X B 2 = D 2
88 3 negcld φ B
89 11 88 subcld φ 2 A X B
90 sqeqor 2 A X B D 2 A X B 2 = D 2 2 A X B = D 2 A X B = D
91 89 6 90 syl2anc φ 2 A X B 2 = D 2 2 A X B = D 2 A X B = D
92 11 88 6 subaddd φ 2 A X B = D - B + D = 2 A X
93 88 6 addcld φ - B + D
94 2ne0 2 0
95 94 a1i φ 2 0
96 56 1 95 2 mulne0d φ 2 A 0
97 93 10 5 96 divmuld φ - B + D 2 A = X 2 A X = - B + D
98 eqcom X = - B + D 2 A - B + D 2 A = X
99 eqcom - B + D = 2 A X 2 A X = - B + D
100 97 98 99 3bitr4g φ X = - B + D 2 A - B + D = 2 A X
101 92 100 bitr4d φ 2 A X B = D X = - B + D 2 A
102 88 6 negsubd φ - B + D = - B - D
103 102 eqeq1d φ - B + D = 2 A X - B - D = 2 A X
104 6 negcld φ D
105 11 88 104 subaddd φ 2 A X B = D - B + D = 2 A X
106 88 6 subcld φ - B - D
107 106 10 5 96 divmuld φ - B - D 2 A = X 2 A X = - B - D
108 eqcom X = - B - D 2 A - B - D 2 A = X
109 eqcom - B - D = 2 A X 2 A X = - B - D
110 107 108 109 3bitr4g φ X = - B - D 2 A - B - D = 2 A X
111 103 105 110 3bitr4d φ 2 A X B = D X = - B - D 2 A
112 101 111 orbi12d φ 2 A X B = D 2 A X B = D X = - B + D 2 A X = - B - D 2 A
113 87 91 112 3bitrd φ A X 2 + B X + C = 0 X = - B + D 2 A X = - B - D 2 A