Metamath Proof Explorer


Theorem r1filimi

Description: If all elements in a finite set appear in the cumulative hierarchy prior to a limit ordinal, then that set also appears in the cumulative hierarchy prior to the limit ordinal. (Contributed by BTernaryTau, 19-Jan-2026)

Ref Expression
Assertion r1filimi A Fin x A x R1 B Lim B A R1 B

Proof

Step Hyp Ref Expression
1 raleq a = A x a x R1 B x A x R1 B
2 eleq1 a = A a R1 On A R1 On
3 1 2 imbi12d a = A x a x R1 B a R1 On x A x R1 B A R1 On
4 3 imbi2d a = A Lim B x a x R1 B a R1 On Lim B x A x R1 B A R1 On
5 r1funlim Fun R1 Lim dom R1
6 5 simpli Fun R1
7 eluniima Fun R1 x R1 B y B x R1 y
8 6 7 ax-mp x R1 B y B x R1 y
9 limord Lim B Ord B
10 ordsson Ord B B On
11 9 10 syl Lim B B On
12 11 sseld Lim B y B y On
13 12 anim1d Lim B y B x R1 y y On x R1 y
14 13 reximdv2 Lim B y B x R1 y y On x R1 y
15 8 14 biimtrid Lim B x R1 B y On x R1 y
16 15 ralimdv Lim B x a x R1 B x a y On x R1 y
17 vex a V
18 17 tz9.12 x a y On x R1 y y On a R1 y
19 eluniima Fun R1 a R1 On y On a R1 y
20 6 19 ax-mp a R1 On y On a R1 y
21 18 20 sylibr x a y On x R1 y a R1 On
22 16 21 syl6 Lim B x a x R1 B a R1 On
23 4 22 vtoclg A Fin Lim B x A x R1 B A R1 On
24 23 impcomd A Fin x A x R1 B Lim B A R1 On
25 24 3impib A Fin x A x R1 B Lim B A R1 On
26 simp3 A Fin x A x R1 B Lim B Lim B
27 simp1 A Fin x A x R1 B Lim B A Fin
28 eluniima Fun R1 x R1 B z B x R1 z
29 6 28 ax-mp x R1 B z B x R1 z
30 df-rex z B x R1 z z z B x R1 z
31 rankr1ai x R1 z rank x z
32 ordtr1 Ord B rank x z z B rank x B
33 31 32 sylani Ord B x R1 z z B rank x B
34 33 ancomsd Ord B z B x R1 z rank x B
35 34 exlimdv Ord B z z B x R1 z rank x B
36 30 35 biimtrid Ord B z B x R1 z rank x B
37 29 36 biimtrid Ord B x R1 B rank x B
38 37 ralimdv Ord B x A x R1 B x A rank x B
39 9 38 syl Lim B x A x R1 B x A rank x B
40 39 impcom x A x R1 B Lim B x A rank x B
41 40 3adant1 A Fin x A x R1 B Lim B x A rank x B
42 rankfilimbi A Fin A R1 On x A rank x B Lim B rank A B
43 27 25 41 26 42 syl22anc A Fin x A x R1 B Lim B rank A B
44 fveq2 w = suc rank A R1 w = R1 suc rank A
45 44 eleq2d w = suc rank A A R1 w A R1 suc rank A
46 limsuc Lim B rank A B suc rank A B
47 46 biimpa Lim B rank A B suc rank A B
48 47 3adant1 A R1 On Lim B rank A B suc rank A B
49 rankidb A R1 On A R1 suc rank A
50 49 3ad2ant1 A R1 On Lim B rank A B A R1 suc rank A
51 45 48 50 rspcedvdw A R1 On Lim B rank A B w B A R1 w
52 eluniima Fun R1 A R1 B w B A R1 w
53 6 52 ax-mp A R1 B w B A R1 w
54 51 53 sylibr A R1 On Lim B rank A B A R1 B
55 25 26 43 54 syl3anc A Fin x A x R1 B Lim B A R1 B