Description: Each limit stage in the cumulative hierarchy is a weak universe. (Contributed by Mario Carneiro, 2-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | r1limwun | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r1tr | |
|
2 | 1 | a1i | |
3 | limelon | |
|
4 | r1fnon | |
|
5 | 4 | fndmi | |
6 | 3 5 | eleqtrrdi | |
7 | onssr1 | |
|
8 | 6 7 | syl | |
9 | 0ellim | |
|
10 | 9 | adantl | |
11 | 8 10 | sseldd | |
12 | 11 | ne0d | |
13 | rankuni | |
|
14 | rankon | |
|
15 | eloni | |
|
16 | orduniss | |
|
17 | 14 15 16 | mp2b | |
18 | 17 | a1i | |
19 | rankr1ai | |
|
20 | 19 | adantl | |
21 | onuni | |
|
22 | 14 21 | ax-mp | |
23 | 3 | adantr | |
24 | ontr2 | |
|
25 | 22 23 24 | sylancr | |
26 | 18 20 25 | mp2and | |
27 | 13 26 | eqeltrid | |
28 | r1elwf | |
|
29 | 28 | adantl | |
30 | uniwf | |
|
31 | 29 30 | sylib | |
32 | 6 | adantr | |
33 | rankr1ag | |
|
34 | 31 32 33 | syl2anc | |
35 | 27 34 | mpbird | |
36 | r1pwcl | |
|
37 | 36 | adantl | |
38 | 37 | biimpa | |
39 | 28 | ad2antlr | |
40 | r1elwf | |
|
41 | 40 | adantl | |
42 | rankprb | |
|
43 | 39 41 42 | syl2anc | |
44 | limord | |
|
45 | 44 | ad3antlr | |
46 | 20 | adantr | |
47 | rankr1ai | |
|
48 | 47 | adantl | |
49 | ordunel | |
|
50 | 45 46 48 49 | syl3anc | |
51 | limsuc | |
|
52 | 51 | ad3antlr | |
53 | 50 52 | mpbid | |
54 | 43 53 | eqeltrd | |
55 | prwf | |
|
56 | 39 41 55 | syl2anc | |
57 | 32 | adantr | |
58 | rankr1ag | |
|
59 | 56 57 58 | syl2anc | |
60 | 54 59 | mpbird | |
61 | 60 | ralrimiva | |
62 | 35 38 61 | 3jca | |
63 | 62 | ralrimiva | |
64 | fvex | |
|
65 | iswun | |
|
66 | 64 65 | ax-mp | |
67 | 2 12 63 66 | syl3anbrc | |