Metamath Proof Explorer


Theorem r1val1

Description: The value of the cumulative hierarchy of sets function expressed recursively. Theorem 7Q of Enderton p. 202. (Contributed by NM, 25-Nov-2003) (Revised by Mario Carneiro, 17-Nov-2014)

Ref Expression
Assertion r1val1 AdomR1R1A=xA𝒫R1x

Proof

Step Hyp Ref Expression
1 simpr AdomR1A=A=
2 1 fveq2d AdomR1A=R1A=R1
3 r10 R1=
4 2 3 eqtrdi AdomR1A=R1A=
5 0ss xA𝒫R1x
6 5 a1i AdomR1A=xA𝒫R1x
7 4 6 eqsstrd AdomR1A=R1AxA𝒫R1x
8 nfv xAdomR1
9 nfcv _xR1A
10 nfiu1 _xxA𝒫R1x
11 9 10 nfss xR1AxA𝒫R1x
12 simpr AdomR1A=sucxA=sucx
13 12 fveq2d AdomR1A=sucxR1A=R1sucx
14 eleq1 A=sucxAdomR1sucxdomR1
15 14 biimpac AdomR1A=sucxsucxdomR1
16 r1funlim FunR1LimdomR1
17 16 simpri LimdomR1
18 limsuc LimdomR1xdomR1sucxdomR1
19 17 18 ax-mp xdomR1sucxdomR1
20 15 19 sylibr AdomR1A=sucxxdomR1
21 r1sucg xdomR1R1sucx=𝒫R1x
22 20 21 syl AdomR1A=sucxR1sucx=𝒫R1x
23 13 22 eqtrd AdomR1A=sucxR1A=𝒫R1x
24 vex xV
25 24 sucid xsucx
26 25 12 eleqtrrid AdomR1A=sucxxA
27 ssiun2 xA𝒫R1xxA𝒫R1x
28 26 27 syl AdomR1A=sucx𝒫R1xxA𝒫R1x
29 23 28 eqsstrd AdomR1A=sucxR1AxA𝒫R1x
30 29 ex AdomR1A=sucxR1AxA𝒫R1x
31 30 a1d AdomR1xOnA=sucxR1AxA𝒫R1x
32 8 11 31 rexlimd AdomR1xOnA=sucxR1AxA𝒫R1x
33 32 imp AdomR1xOnA=sucxR1AxA𝒫R1x
34 r1limg AdomR1LimAR1A=xAR1x
35 r1tr TrR1x
36 dftr4 TrR1xR1x𝒫R1x
37 35 36 mpbi R1x𝒫R1x
38 37 a1i AdomR1LimAR1x𝒫R1x
39 38 ralrimivw AdomR1LimAxAR1x𝒫R1x
40 ss2iun xAR1x𝒫R1xxAR1xxA𝒫R1x
41 39 40 syl AdomR1LimAxAR1xxA𝒫R1x
42 34 41 eqsstrd AdomR1LimAR1AxA𝒫R1x
43 42 adantrl AdomR1AVLimAR1AxA𝒫R1x
44 limord LimdomR1OrddomR1
45 17 44 ax-mp OrddomR1
46 ordsson OrddomR1domR1On
47 45 46 ax-mp domR1On
48 47 sseli AdomR1AOn
49 onzsl AOnA=xOnA=sucxAVLimA
50 48 49 sylib AdomR1A=xOnA=sucxAVLimA
51 7 33 43 50 mpjao3dan AdomR1R1AxA𝒫R1x
52 ordtr1 OrddomR1xAAdomR1xdomR1
53 45 52 ax-mp xAAdomR1xdomR1
54 53 ancoms AdomR1xAxdomR1
55 54 21 syl AdomR1xAR1sucx=𝒫R1x
56 simpr AdomR1xAxA
57 ordelord OrddomR1AdomR1OrdA
58 45 57 mpan AdomR1OrdA
59 58 adantr AdomR1xAOrdA
60 ordelsuc xAOrdAxAsucxA
61 56 59 60 syl2anc AdomR1xAxAsucxA
62 56 61 mpbid AdomR1xAsucxA
63 54 19 sylib AdomR1xAsucxdomR1
64 simpl AdomR1xAAdomR1
65 r1ord3g sucxdomR1AdomR1sucxAR1sucxR1A
66 63 64 65 syl2anc AdomR1xAsucxAR1sucxR1A
67 62 66 mpd AdomR1xAR1sucxR1A
68 55 67 eqsstrrd AdomR1xA𝒫R1xR1A
69 68 ralrimiva AdomR1xA𝒫R1xR1A
70 iunss xA𝒫R1xR1AxA𝒫R1xR1A
71 69 70 sylibr AdomR1xA𝒫R1xR1A
72 51 71 eqssd AdomR1R1A=xA𝒫R1x