Description: The value of the cumulative hierarchy of sets function expressed recursively. Theorem 7Q of Enderton p. 202. (Contributed by NM, 25-Nov-2003) (Revised by Mario Carneiro, 17-Nov-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | r1val1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr | |
|
2 | 1 | fveq2d | |
3 | r10 | |
|
4 | 2 3 | eqtrdi | |
5 | 0ss | |
|
6 | 5 | a1i | |
7 | 4 6 | eqsstrd | |
8 | nfv | |
|
9 | nfcv | |
|
10 | nfiu1 | |
|
11 | 9 10 | nfss | |
12 | simpr | |
|
13 | 12 | fveq2d | |
14 | eleq1 | |
|
15 | 14 | biimpac | |
16 | r1funlim | |
|
17 | 16 | simpri | |
18 | limsuc | |
|
19 | 17 18 | ax-mp | |
20 | 15 19 | sylibr | |
21 | r1sucg | |
|
22 | 20 21 | syl | |
23 | 13 22 | eqtrd | |
24 | vex | |
|
25 | 24 | sucid | |
26 | 25 12 | eleqtrrid | |
27 | ssiun2 | |
|
28 | 26 27 | syl | |
29 | 23 28 | eqsstrd | |
30 | 29 | ex | |
31 | 30 | a1d | |
32 | 8 11 31 | rexlimd | |
33 | 32 | imp | |
34 | r1limg | |
|
35 | r1tr | |
|
36 | dftr4 | |
|
37 | 35 36 | mpbi | |
38 | 37 | a1i | |
39 | 38 | ralrimivw | |
40 | ss2iun | |
|
41 | 39 40 | syl | |
42 | 34 41 | eqsstrd | |
43 | 42 | adantrl | |
44 | limord | |
|
45 | 17 44 | ax-mp | |
46 | ordsson | |
|
47 | 45 46 | ax-mp | |
48 | 47 | sseli | |
49 | onzsl | |
|
50 | 48 49 | sylib | |
51 | 7 33 43 50 | mpjao3dan | |
52 | ordtr1 | |
|
53 | 45 52 | ax-mp | |
54 | 53 | ancoms | |
55 | 54 21 | syl | |
56 | simpr | |
|
57 | ordelord | |
|
58 | 45 57 | mpan | |
59 | 58 | adantr | |
60 | ordelsuc | |
|
61 | 56 59 60 | syl2anc | |
62 | 56 61 | mpbid | |
63 | 54 19 | sylib | |
64 | simpl | |
|
65 | r1ord3g | |
|
66 | 63 64 65 | syl2anc | |
67 | 62 66 | mpd | |
68 | 55 67 | eqsstrrd | |
69 | 68 | ralrimiva | |
70 | iunss | |
|
71 | 69 70 | sylibr | |
72 | 51 71 | eqssd | |