Metamath Proof Explorer


Theorem recgt0

Description: The reciprocal of a positive number is positive. Exercise 4 of Apostol p. 21. (Contributed by NM, 25-Aug-1999) (Revised by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion recgt0 A0<A0<1A

Proof

Step Hyp Ref Expression
1 simpl A0<AA
2 1 recnd A0<AA
3 gt0ne0 A0<AA0
4 2 3 recne0d A0<A1A0
5 4 necomd A0<A01A
6 5 neneqd A0<A¬0=1A
7 0lt1 0<1
8 0re 0
9 1re 1
10 8 9 ltnsymi 0<1¬1<0
11 7 10 ax-mp ¬1<0
12 simpll A0<A1A<0A
13 3 adantr A0<A1A<0A0
14 12 13 rereccld A0<A1A<01A
15 14 renegcld A0<A1A<01A
16 simpr A0<A1A<01A<0
17 1 3 rereccld A0<A1A
18 17 adantr A0<A1A<01A
19 18 lt0neg1d A0<A1A<01A<00<1A
20 16 19 mpbid A0<A1A<00<1A
21 simplr A0<A1A<00<A
22 15 12 20 21 mulgt0d A0<A1A<00<1AA
23 2 adantr A0<A1A<0A
24 23 13 reccld A0<A1A<01A
25 24 23 mulneg1d A0<A1A<01AA=1AA
26 23 13 recid2d A0<A1A<01AA=1
27 26 negeqd A0<A1A<01AA=1
28 25 27 eqtrd A0<A1A<01AA=1
29 22 28 breqtrd A0<A1A<00<1
30 1red A0<A1A<01
31 30 lt0neg1d A0<A1A<01<00<1
32 29 31 mpbird A0<A1A<01<0
33 32 ex A0<A1A<01<0
34 11 33 mtoi A0<A¬1A<0
35 ioran ¬0=1A1A<0¬0=1A¬1A<0
36 6 34 35 sylanbrc A0<A¬0=1A1A<0
37 axlttri 01A0<1A¬0=1A1A<0
38 8 17 37 sylancr A0<A0<1A¬0=1A1A<0
39 36 38 mpbird A0<A0<1A