Description: Lemma for Proposition 9-3.7(v) of Gleason p. 124. (Contributed by NM, 30-Apr-1996) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | reclempr.1 | |
|
Assertion | reclem4pr | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reclempr.1 | |
|
2 | 1 | reclem2pr | |
3 | df-mp | |
|
4 | mulclnq | |
|
5 | 3 4 | genpelv | |
6 | 2 5 | mpdan | |
7 | 1 | eqabri | |
8 | ltrelnq | |
|
9 | 8 | brel | |
10 | 9 | simprd | |
11 | elprnq | |
|
12 | ltmnq | |
|
13 | 11 12 | syl | |
14 | 13 | biimpd | |
15 | 14 | adantr | |
16 | recclnq | |
|
17 | prub | |
|
18 | 16 17 | sylan2 | |
19 | ltmnq | |
|
20 | mulcomnq | |
|
21 | 20 | a1i | |
22 | recidnq | |
|
23 | 21 22 | breq12d | |
24 | 19 23 | bitrd | |
25 | 24 | adantl | |
26 | 18 25 | sylibd | |
27 | 15 26 | anim12d | |
28 | ltsonq | |
|
29 | 28 8 | sotri | |
30 | 27 29 | syl6 | |
31 | 30 | exp4b | |
32 | 10 31 | syl5 | |
33 | 32 | pm2.43d | |
34 | 33 | impd | |
35 | 34 | exlimdv | |
36 | 7 35 | biimtrid | |
37 | breq1 | |
|
38 | 37 | biimprcd | |
39 | 36 38 | syl6 | |
40 | 39 | expimpd | |
41 | 40 | rexlimdvv | |
42 | 6 41 | sylbid | |
43 | df-1p | |
|
44 | 43 | eqabri | |
45 | 42 44 | syl6ibr | |
46 | 45 | ssrdv | |
47 | 1 | reclem3pr | |
48 | 46 47 | eqssd | |