Metamath Proof Explorer


Theorem reclem4pr

Description: Lemma for Proposition 9-3.7(v) of Gleason p. 124. (Contributed by NM, 30-Apr-1996) (New usage is discouraged.)

Ref Expression
Hypothesis reclempr.1 B=x|yx<𝑸y¬*𝑸yA
Assertion reclem4pr A𝑷A𝑷B=1𝑷

Proof

Step Hyp Ref Expression
1 reclempr.1 B=x|yx<𝑸y¬*𝑸yA
2 1 reclem2pr A𝑷B𝑷
3 df-mp 𝑷=y𝑷,w𝑷u|fygwu=f𝑸g
4 mulclnq f𝑸g𝑸f𝑸g𝑸
5 3 4 genpelv A𝑷B𝑷wA𝑷BzAxBw=z𝑸x
6 2 5 mpdan A𝑷wA𝑷BzAxBw=z𝑸x
7 1 eqabri xByx<𝑸y¬*𝑸yA
8 ltrelnq <𝑸𝑸×𝑸
9 8 brel x<𝑸yx𝑸y𝑸
10 9 simprd x<𝑸yy𝑸
11 elprnq A𝑷zAz𝑸
12 ltmnq z𝑸x<𝑸yz𝑸x<𝑸z𝑸y
13 11 12 syl A𝑷zAx<𝑸yz𝑸x<𝑸z𝑸y
14 13 biimpd A𝑷zAx<𝑸yz𝑸x<𝑸z𝑸y
15 14 adantr A𝑷zAy𝑸x<𝑸yz𝑸x<𝑸z𝑸y
16 recclnq y𝑸*𝑸y𝑸
17 prub A𝑷zA*𝑸y𝑸¬*𝑸yAz<𝑸*𝑸y
18 16 17 sylan2 A𝑷zAy𝑸¬*𝑸yAz<𝑸*𝑸y
19 ltmnq y𝑸z<𝑸*𝑸yy𝑸z<𝑸y𝑸*𝑸y
20 mulcomnq y𝑸z=z𝑸y
21 20 a1i y𝑸y𝑸z=z𝑸y
22 recidnq y𝑸y𝑸*𝑸y=1𝑸
23 21 22 breq12d y𝑸y𝑸z<𝑸y𝑸*𝑸yz𝑸y<𝑸1𝑸
24 19 23 bitrd y𝑸z<𝑸*𝑸yz𝑸y<𝑸1𝑸
25 24 adantl A𝑷zAy𝑸z<𝑸*𝑸yz𝑸y<𝑸1𝑸
26 18 25 sylibd A𝑷zAy𝑸¬*𝑸yAz𝑸y<𝑸1𝑸
27 15 26 anim12d A𝑷zAy𝑸x<𝑸y¬*𝑸yAz𝑸x<𝑸z𝑸yz𝑸y<𝑸1𝑸
28 ltsonq <𝑸Or𝑸
29 28 8 sotri z𝑸x<𝑸z𝑸yz𝑸y<𝑸1𝑸z𝑸x<𝑸1𝑸
30 27 29 syl6 A𝑷zAy𝑸x<𝑸y¬*𝑸yAz𝑸x<𝑸1𝑸
31 30 exp4b A𝑷zAy𝑸x<𝑸y¬*𝑸yAz𝑸x<𝑸1𝑸
32 10 31 syl5 A𝑷zAx<𝑸yx<𝑸y¬*𝑸yAz𝑸x<𝑸1𝑸
33 32 pm2.43d A𝑷zAx<𝑸y¬*𝑸yAz𝑸x<𝑸1𝑸
34 33 impd A𝑷zAx<𝑸y¬*𝑸yAz𝑸x<𝑸1𝑸
35 34 exlimdv A𝑷zAyx<𝑸y¬*𝑸yAz𝑸x<𝑸1𝑸
36 7 35 biimtrid A𝑷zAxBz𝑸x<𝑸1𝑸
37 breq1 w=z𝑸xw<𝑸1𝑸z𝑸x<𝑸1𝑸
38 37 biimprcd z𝑸x<𝑸1𝑸w=z𝑸xw<𝑸1𝑸
39 36 38 syl6 A𝑷zAxBw=z𝑸xw<𝑸1𝑸
40 39 expimpd A𝑷zAxBw=z𝑸xw<𝑸1𝑸
41 40 rexlimdvv A𝑷zAxBw=z𝑸xw<𝑸1𝑸
42 6 41 sylbid A𝑷wA𝑷Bw<𝑸1𝑸
43 df-1p 1𝑷=w|w<𝑸1𝑸
44 43 eqabri w1𝑷w<𝑸1𝑸
45 42 44 syl6ibr A𝑷wA𝑷Bw1𝑷
46 45 ssrdv A𝑷A𝑷B1𝑷
47 1 reclem3pr A𝑷1𝑷A𝑷B
48 46 47 eqssd A𝑷A𝑷B=1𝑷