Metamath Proof Explorer


Theorem reff

Description: For any cover refinement, there exists a function associating with each set in the refinement a set in the original cover containing it. This is sometimes used as a definition of refinement. Note that this definition uses the axiom of choice through ac6sg . (Contributed by Thierry Arnoux, 12-Jan-2020)

Ref Expression
Assertion reff AVARefBBAff:ABvAvfv

Proof

Step Hyp Ref Expression
1 ssid BB
2 eqid A=A
3 eqid B=B
4 2 3 isref AVARefBB=AvAuBvu
5 4 simprbda AVARefBB=A
6 1 5 sseqtrid AVARefBBA
7 4 simplbda AVARefBvAuBvu
8 sseq2 u=fvvuvfv
9 8 ac6sg AVvAuBvuff:ABvAvfv
10 9 adantr AVARefBvAuBvuff:ABvAvfv
11 7 10 mpd AVARefBff:ABvAvfv
12 6 11 jca AVARefBBAff:ABvAvfv
13 simplr AVBAf:ABvAvfvBA
14 nfv vAVBA
15 nfv vf:AB
16 nfra1 vvAvfv
17 15 16 nfan vf:ABvAvfv
18 14 17 nfan vAVBAf:ABvAvfv
19 nfv vxA
20 18 19 nfan vAVBAf:ABvAvfvxA
21 simplrl AVBAf:ABvAvfvvAf:AB
22 simpr AVBAf:ABvAvfvvAvA
23 21 22 ffvelcdmd AVBAf:ABvAvfvvAfvB
24 23 adantlr AVBAf:ABvAvfvxAvAfvB
25 24 adantr AVBAf:ABvAvfvxAvAxvfvB
26 simplrr AVBAf:ABvAvfvvAvAvfv
27 26 adantlr AVBAf:ABvAvfvxAvAvAvfv
28 simpr AVBAf:ABvAvfvxAvAvA
29 rspa vAvfvvAvfv
30 27 28 29 syl2anc AVBAf:ABvAvfvxAvAvfv
31 30 sselda AVBAf:ABvAvfvxAvAxvxfv
32 eleq2 u=fvxuxfv
33 32 rspcev fvBxfvuBxu
34 25 31 33 syl2anc AVBAf:ABvAvfvxAvAxvuBxu
35 simpr AVBAf:ABvAvfvxAxA
36 eluni2 xAvAxv
37 35 36 sylib AVBAf:ABvAvfvxAvAxv
38 20 34 37 r19.29af AVBAf:ABvAvfvxAuBxu
39 eluni2 xBuBxu
40 38 39 sylibr AVBAf:ABvAvfvxAxB
41 13 40 eqelssd AVBAf:ABvAvfvB=A
42 26 22 29 syl2anc AVBAf:ABvAvfvvAvfv
43 8 rspcev fvBvfvuBvu
44 23 42 43 syl2anc AVBAf:ABvAvfvvAuBvu
45 44 ex AVBAf:ABvAvfvvAuBvu
46 18 45 ralrimi AVBAf:ABvAvfvvAuBvu
47 4 ad2antrr AVBAf:ABvAvfvARefBB=AvAuBvu
48 41 46 47 mpbir2and AVBAf:ABvAvfvARefB
49 48 ex AVBAf:ABvAvfvARefB
50 49 exlimdv AVBAff:ABvAvfvARefB
51 50 impr AVBAff:ABvAvfvARefB
52 12 51 impbida AVARefBBAff:ABvAvfv