Metamath Proof Explorer


Theorem reff

Description: For any cover refinement, there exists a function associating with each set in the refinement a set in the original cover containing it. This is sometimes used as a definition of refinement. Note that this definition uses the axiom of choice through ac6sg . (Contributed by Thierry Arnoux, 12-Jan-2020)

Ref Expression
Assertion reff A V A Ref B B A f f : A B v A v f v

Proof

Step Hyp Ref Expression
1 ssid B B
2 eqid A = A
3 eqid B = B
4 2 3 isref A V A Ref B B = A v A u B v u
5 4 simprbda A V A Ref B B = A
6 1 5 sseqtrid A V A Ref B B A
7 4 simplbda A V A Ref B v A u B v u
8 sseq2 u = f v v u v f v
9 8 ac6sg A V v A u B v u f f : A B v A v f v
10 9 adantr A V A Ref B v A u B v u f f : A B v A v f v
11 7 10 mpd A V A Ref B f f : A B v A v f v
12 6 11 jca A V A Ref B B A f f : A B v A v f v
13 simplr A V B A f : A B v A v f v B A
14 nfv v A V B A
15 nfv v f : A B
16 nfra1 v v A v f v
17 15 16 nfan v f : A B v A v f v
18 14 17 nfan v A V B A f : A B v A v f v
19 nfv v x A
20 18 19 nfan v A V B A f : A B v A v f v x A
21 simplrl A V B A f : A B v A v f v v A f : A B
22 simpr A V B A f : A B v A v f v v A v A
23 21 22 ffvelrnd A V B A f : A B v A v f v v A f v B
24 23 adantlr A V B A f : A B v A v f v x A v A f v B
25 24 adantr A V B A f : A B v A v f v x A v A x v f v B
26 simplrr A V B A f : A B v A v f v v A v A v f v
27 26 adantlr A V B A f : A B v A v f v x A v A v A v f v
28 simpr A V B A f : A B v A v f v x A v A v A
29 rspa v A v f v v A v f v
30 27 28 29 syl2anc A V B A f : A B v A v f v x A v A v f v
31 30 sselda A V B A f : A B v A v f v x A v A x v x f v
32 eleq2 u = f v x u x f v
33 32 rspcev f v B x f v u B x u
34 25 31 33 syl2anc A V B A f : A B v A v f v x A v A x v u B x u
35 simpr A V B A f : A B v A v f v x A x A
36 eluni2 x A v A x v
37 35 36 sylib A V B A f : A B v A v f v x A v A x v
38 20 34 37 r19.29af A V B A f : A B v A v f v x A u B x u
39 eluni2 x B u B x u
40 38 39 sylibr A V B A f : A B v A v f v x A x B
41 13 40 eqelssd A V B A f : A B v A v f v B = A
42 26 22 29 syl2anc A V B A f : A B v A v f v v A v f v
43 8 rspcev f v B v f v u B v u
44 23 42 43 syl2anc A V B A f : A B v A v f v v A u B v u
45 44 ex A V B A f : A B v A v f v v A u B v u
46 18 45 ralrimi A V B A f : A B v A v f v v A u B v u
47 4 ad2antrr A V B A f : A B v A v f v A Ref B B = A v A u B v u
48 41 46 47 mpbir2and A V B A f : A B v A v f v A Ref B
49 48 ex A V B A f : A B v A v f v A Ref B
50 49 exlimdv A V B A f f : A B v A v f v A Ref B
51 50 impr A V B A f f : A B v A v f v A Ref B
52 12 51 impbida A V A Ref B B A f f : A B v A v f v