Description: For any cover refinement, there exists a function associating with each set in the refinement a set in the original cover containing it. This is sometimes used as a definition of refinement. Note that this definition uses the axiom of choice through ac6sg . (Contributed by Thierry Arnoux, 12-Jan-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | reff | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid | |
|
2 | eqid | |
|
3 | eqid | |
|
4 | 2 3 | isref | |
5 | 4 | simprbda | |
6 | 1 5 | sseqtrid | |
7 | 4 | simplbda | |
8 | sseq2 | |
|
9 | 8 | ac6sg | |
10 | 9 | adantr | |
11 | 7 10 | mpd | |
12 | 6 11 | jca | |
13 | simplr | |
|
14 | nfv | |
|
15 | nfv | |
|
16 | nfra1 | |
|
17 | 15 16 | nfan | |
18 | 14 17 | nfan | |
19 | nfv | |
|
20 | 18 19 | nfan | |
21 | simplrl | |
|
22 | simpr | |
|
23 | 21 22 | ffvelcdmd | |
24 | 23 | adantlr | |
25 | 24 | adantr | |
26 | simplrr | |
|
27 | 26 | adantlr | |
28 | simpr | |
|
29 | rspa | |
|
30 | 27 28 29 | syl2anc | |
31 | 30 | sselda | |
32 | eleq2 | |
|
33 | 32 | rspcev | |
34 | 25 31 33 | syl2anc | |
35 | simpr | |
|
36 | eluni2 | |
|
37 | 35 36 | sylib | |
38 | 20 34 37 | r19.29af | |
39 | eluni2 | |
|
40 | 38 39 | sylibr | |
41 | 13 40 | eqelssd | |
42 | 26 22 29 | syl2anc | |
43 | 8 | rspcev | |
44 | 23 42 43 | syl2anc | |
45 | 44 | ex | |
46 | 18 45 | ralrimi | |
47 | 4 | ad2antrr | |
48 | 41 46 47 | mpbir2and | |
49 | 48 | ex | |
50 | 49 | exlimdv | |
51 | 50 | impr | |
52 | 12 51 | impbida | |