Step |
Hyp |
Ref |
Expression |
1 |
|
ssid |
|
2 |
|
eqid |
|
3 |
|
eqid |
|
4 |
2 3
|
isref |
|
5 |
4
|
simprbda |
|
6 |
1 5
|
sseqtrid |
|
7 |
4
|
simplbda |
|
8 |
|
sseq2 |
|
9 |
8
|
ac6sg |
|
10 |
9
|
adantr |
|
11 |
7 10
|
mpd |
|
12 |
6 11
|
jca |
|
13 |
|
simplr |
|
14 |
|
nfv |
|
15 |
|
nfv |
|
16 |
|
nfra1 |
|
17 |
15 16
|
nfan |
|
18 |
14 17
|
nfan |
|
19 |
|
nfv |
|
20 |
18 19
|
nfan |
|
21 |
|
simplrl |
|
22 |
|
simpr |
|
23 |
21 22
|
ffvelrnd |
|
24 |
23
|
adantlr |
|
25 |
24
|
adantr |
|
26 |
|
simplrr |
|
27 |
26
|
adantlr |
|
28 |
|
simpr |
|
29 |
|
rspa |
|
30 |
27 28 29
|
syl2anc |
|
31 |
30
|
sselda |
|
32 |
|
eleq2 |
|
33 |
32
|
rspcev |
|
34 |
25 31 33
|
syl2anc |
|
35 |
|
simpr |
|
36 |
|
eluni2 |
|
37 |
35 36
|
sylib |
|
38 |
20 34 37
|
r19.29af |
|
39 |
|
eluni2 |
|
40 |
38 39
|
sylibr |
|
41 |
13 40
|
eqelssd |
|
42 |
26 22 29
|
syl2anc |
|
43 |
8
|
rspcev |
|
44 |
23 42 43
|
syl2anc |
|
45 |
44
|
ex |
|
46 |
18 45
|
ralrimi |
|
47 |
4
|
ad2antrr |
|
48 |
41 46 47
|
mpbir2and |
|
49 |
48
|
ex |
|
50 |
49
|
exlimdv |
|
51 |
50
|
impr |
|
52 |
12 51
|
impbida |
|