Description: There are no representations of more than ( S x. N ) with only S terms bounded by N . Remark of Nathanson p. 123. (Contributed by Thierry Arnoux, 7-Dec-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | reprgt.n | |
|
reprgt.a | |
||
reprgt.m | |
||
reprgt.s | |
||
reprgt.1 | |
||
Assertion | reprgt | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reprgt.n | |
|
2 | reprgt.a | |
|
3 | reprgt.m | |
|
4 | reprgt.s | |
|
5 | reprgt.1 | |
|
6 | fz1ssnn | |
|
7 | 2 6 | sstrdi | |
8 | 7 3 4 | reprval | |
9 | fzofi | |
|
10 | 9 | a1i | |
11 | nnssre | |
|
12 | 7 11 | sstrdi | |
13 | 12 | ralrimivw | |
14 | 13 | ralrimivw | |
15 | 14 | r19.21bi | |
16 | 15 | r19.21bi | |
17 | ovex | |
|
18 | 17 | a1i | |
19 | 18 2 | ssexd | |
20 | 19 | adantr | |
21 | 9 | elexi | |
22 | 21 | a1i | |
23 | simpr | |
|
24 | elmapg | |
|
25 | 24 | biimpa | |
26 | 20 22 23 25 | syl21anc | |
27 | 26 | adantr | |
28 | simpr | |
|
29 | 27 28 | ffvelcdmd | |
30 | 16 29 | sseldd | |
31 | 10 30 | fsumrecl | |
32 | 4 | nn0red | |
33 | 32 | adantr | |
34 | 1 | nn0red | |
35 | 34 | adantr | |
36 | 33 35 | remulcld | |
37 | 3 | zred | |
38 | 37 | adantr | |
39 | 34 | ad2antrr | |
40 | 2 | ad2antrr | |
41 | 40 29 | sseldd | |
42 | elfzle2 | |
|
43 | 41 42 | syl | |
44 | 10 30 39 43 | fsumle | |
45 | 34 | recnd | |
46 | fsumconst | |
|
47 | 9 45 46 | sylancr | |
48 | hashfzo0 | |
|
49 | 4 48 | syl | |
50 | 49 | oveq1d | |
51 | 47 50 | eqtrd | |
52 | 51 | adantr | |
53 | 44 52 | breqtrd | |
54 | 5 | adantr | |
55 | 31 36 38 53 54 | lelttrd | |
56 | 31 55 | ltned | |
57 | 56 | neneqd | |
58 | 57 | ralrimiva | |
59 | rabeq0 | |
|
60 | 58 59 | sylibr | |
61 | 8 60 | eqtrd | |