Metamath Proof Explorer


Theorem reprgt

Description: There are no representations of more than ( S x. N ) with only S terms bounded by N . Remark of Nathanson p. 123. (Contributed by Thierry Arnoux, 7-Dec-2021)

Ref Expression
Hypotheses reprgt.n φN0
reprgt.a φA1N
reprgt.m φM
reprgt.s φS0
reprgt.1 φS N<M
Assertion reprgt φAreprSM=

Proof

Step Hyp Ref Expression
1 reprgt.n φN0
2 reprgt.a φA1N
3 reprgt.m φM
4 reprgt.s φS0
5 reprgt.1 φS N<M
6 fz1ssnn 1N
7 2 6 sstrdi φA
8 7 3 4 reprval φAreprSM=cA0..^S|a0..^Sca=M
9 fzofi 0..^SFin
10 9 a1i φcA0..^S0..^SFin
11 nnssre
12 7 11 sstrdi φA
13 12 ralrimivw φa0..^SA
14 13 ralrimivw φcA0..^Sa0..^SA
15 14 r19.21bi φcA0..^Sa0..^SA
16 15 r19.21bi φcA0..^Sa0..^SA
17 ovex 1NV
18 17 a1i φ1NV
19 18 2 ssexd φAV
20 19 adantr φcA0..^SAV
21 9 elexi 0..^SV
22 21 a1i φcA0..^S0..^SV
23 simpr φcA0..^ScA0..^S
24 elmapg AV0..^SVcA0..^Sc:0..^SA
25 24 biimpa AV0..^SVcA0..^Sc:0..^SA
26 20 22 23 25 syl21anc φcA0..^Sc:0..^SA
27 26 adantr φcA0..^Sa0..^Sc:0..^SA
28 simpr φcA0..^Sa0..^Sa0..^S
29 27 28 ffvelcdmd φcA0..^Sa0..^ScaA
30 16 29 sseldd φcA0..^Sa0..^Sca
31 10 30 fsumrecl φcA0..^Sa0..^Sca
32 4 nn0red φS
33 32 adantr φcA0..^SS
34 1 nn0red φN
35 34 adantr φcA0..^SN
36 33 35 remulcld φcA0..^SS N
37 3 zred φM
38 37 adantr φcA0..^SM
39 34 ad2antrr φcA0..^Sa0..^SN
40 2 ad2antrr φcA0..^Sa0..^SA1N
41 40 29 sseldd φcA0..^Sa0..^Sca1N
42 elfzle2 ca1NcaN
43 41 42 syl φcA0..^Sa0..^ScaN
44 10 30 39 43 fsumle φcA0..^Sa0..^Scaa0..^SN
45 34 recnd φN
46 fsumconst 0..^SFinNa0..^SN=0..^S N
47 9 45 46 sylancr φa0..^SN=0..^S N
48 hashfzo0 S00..^S=S
49 4 48 syl φ0..^S=S
50 49 oveq1d φ0..^S N=S N
51 47 50 eqtrd φa0..^SN=S N
52 51 adantr φcA0..^Sa0..^SN=S N
53 44 52 breqtrd φcA0..^Sa0..^ScaS N
54 5 adantr φcA0..^SS N<M
55 31 36 38 53 54 lelttrd φcA0..^Sa0..^Sca<M
56 31 55 ltned φcA0..^Sa0..^ScaM
57 56 neneqd φcA0..^S¬a0..^Sca=M
58 57 ralrimiva φcA0..^S¬a0..^Sca=M
59 rabeq0 cA0..^S|a0..^Sca=M=cA0..^S¬a0..^Sca=M
60 58 59 sylibr φcA0..^S|a0..^Sca=M=
61 8 60 eqtrd φAreprSM=