Metamath Proof Explorer


Theorem restfpw

Description: The restriction of the set of finite subsets of A is the set of finite subsets of B . (Contributed by Mario Carneiro, 18-Sep-2015)

Ref Expression
Assertion restfpw AVBA𝒫AFin𝑡B=𝒫BFin

Proof

Step Hyp Ref Expression
1 pwexg AV𝒫AV
2 1 adantr AVBA𝒫AV
3 inex1g 𝒫AV𝒫AFinV
4 2 3 syl AVBA𝒫AFinV
5 ssexg BAAVBV
6 5 ancoms AVBABV
7 restval 𝒫AFinVBV𝒫AFin𝑡B=ranx𝒫AFinxB
8 4 6 7 syl2anc AVBA𝒫AFin𝑡B=ranx𝒫AFinxB
9 inss2 xBB
10 9 a1i AVBAx𝒫AFinxBB
11 elinel2 x𝒫AFinxFin
12 11 adantl AVBAx𝒫AFinxFin
13 inss1 xBx
14 ssfi xFinxBxxBFin
15 12 13 14 sylancl AVBAx𝒫AFinxBFin
16 elfpw xB𝒫BFinxBBxBFin
17 10 15 16 sylanbrc AVBAx𝒫AFinxB𝒫BFin
18 17 fmpttd AVBAx𝒫AFinxB:𝒫AFin𝒫BFin
19 18 frnd AVBAranx𝒫AFinxB𝒫BFin
20 8 19 eqsstrd AVBA𝒫AFin𝑡B𝒫BFin
21 elfpw x𝒫BFinxBxFin
22 21 simplbi x𝒫BFinxB
23 22 adantl AVBAx𝒫BFinxB
24 df-ss xBxB=x
25 23 24 sylib AVBAx𝒫BFinxB=x
26 4 adantr AVBAx𝒫BFin𝒫AFinV
27 6 adantr AVBAx𝒫BFinBV
28 simplr AVBAx𝒫BFinBA
29 23 28 sstrd AVBAx𝒫BFinxA
30 elinel2 x𝒫BFinxFin
31 30 adantl AVBAx𝒫BFinxFin
32 elfpw x𝒫AFinxAxFin
33 29 31 32 sylanbrc AVBAx𝒫BFinx𝒫AFin
34 elrestr 𝒫AFinVBVx𝒫AFinxB𝒫AFin𝑡B
35 26 27 33 34 syl3anc AVBAx𝒫BFinxB𝒫AFin𝑡B
36 25 35 eqeltrrd AVBAx𝒫BFinx𝒫AFin𝑡B
37 20 36 eqelssd AVBA𝒫AFin𝑡B=𝒫BFin