Metamath Proof Explorer


Theorem restnlly

Description: If the property A passes to open subspaces, then a space is n-locally A iff it is locally A . (Contributed by Mario Carneiro, 2-Mar-2015)

Ref Expression
Hypothesis restlly.1 φjAxjj𝑡xA
Assertion restnlly φN-Locally A = Locally A

Proof

Step Hyp Ref Expression
1 restlly.1 φjAxjj𝑡xA
2 nllytop kN-Locally A kTop
3 2 adantl φkN-Locally A kTop
4 nlly2i kN-Locally A yk uy s𝒫yxkuxxsk𝑡sA
5 4 3adant1l φkN-Locally A yk uy s𝒫yxkuxxsk𝑡sA
6 simprl φkN-Locally A yk uy s𝒫y xkuxxsk𝑡sA xk
7 simprr2 φkN-Locally A yk uy s𝒫y xkuxxsk𝑡sA xs
8 simplr φkN-Locally A yk uy s𝒫y xkuxxsk𝑡sA s𝒫y
9 8 elpwid φkN-Locally A yk uy s𝒫y xkuxxsk𝑡sA sy
10 7 9 sstrd φkN-Locally A yk uy s𝒫y xkuxxsk𝑡sA xy
11 velpw x𝒫yxy
12 10 11 sylibr φkN-Locally A yk uy s𝒫y xkuxxsk𝑡sA x𝒫y
13 6 12 elind φkN-Locally A yk uy s𝒫y xkuxxsk𝑡sA xk𝒫y
14 simprr1 φkN-Locally A yk uy s𝒫y xkuxxsk𝑡sA ux
15 simpll1 φkN-Locally A yk uy s𝒫y xkuxxsk𝑡sA φkN-Locally A
16 15 2 simpl2im φkN-Locally A yk uy s𝒫y xkuxxsk𝑡sA kTop
17 restabs kTopxss𝒫yk𝑡s𝑡x=k𝑡x
18 16 7 8 17 syl3anc φkN-Locally A yk uy s𝒫y xkuxxsk𝑡sA k𝑡s𝑡x=k𝑡x
19 df-ss xsxs=x
20 7 19 sylib φkN-Locally A yk uy s𝒫y xkuxxsk𝑡sA xs=x
21 elrestr kTops𝒫yxkxsk𝑡s
22 16 8 6 21 syl3anc φkN-Locally A yk uy s𝒫y xkuxxsk𝑡sA xsk𝑡s
23 20 22 eqeltrrd φkN-Locally A yk uy s𝒫y xkuxxsk𝑡sA xk𝑡s
24 eleq2 j=k𝑡sxjxk𝑡s
25 oveq1 j=k𝑡sj𝑡x=k𝑡s𝑡x
26 25 eleq1d j=k𝑡sj𝑡xAk𝑡s𝑡xA
27 24 26 imbi12d j=k𝑡sxjj𝑡xAxk𝑡sk𝑡s𝑡xA
28 15 simpld φkN-Locally A yk uy s𝒫y xkuxxsk𝑡sA φ
29 1 expr φjAxjj𝑡xA
30 29 ralrimiva φjAxjj𝑡xA
31 28 30 syl φkN-Locally A yk uy s𝒫y xkuxxsk𝑡sA jAxjj𝑡xA
32 simprr3 φkN-Locally A yk uy s𝒫y xkuxxsk𝑡sA k𝑡sA
33 27 31 32 rspcdva φkN-Locally A yk uy s𝒫y xkuxxsk𝑡sA xk𝑡sk𝑡s𝑡xA
34 23 33 mpd φkN-Locally A yk uy s𝒫y xkuxxsk𝑡sA k𝑡s𝑡xA
35 18 34 eqeltrrd φkN-Locally A yk uy s𝒫y xkuxxsk𝑡sA k𝑡xA
36 13 14 35 jca32 φkN-Locally A yk uy s𝒫y xkuxxsk𝑡sA xk𝒫yuxk𝑡xA
37 36 ex φkN-Locally A yk uy s𝒫y xkuxxsk𝑡sAxk𝒫yuxk𝑡xA
38 37 reximdv2 φkN-Locally A yk uy s𝒫y xkuxxsk𝑡sAxk𝒫yuxk𝑡xA
39 38 rexlimdva φkN-Locally A yk uy s𝒫yxkuxxsk𝑡sAxk𝒫yuxk𝑡xA
40 5 39 mpd φkN-Locally A yk uy xk𝒫yuxk𝑡xA
41 40 3expb φkN-Locally A ykuy xk𝒫yuxk𝑡xA
42 41 ralrimivva φkN-Locally A ykuyxk𝒫yuxk𝑡xA
43 islly kLocally A kTopykuyxk𝒫yuxk𝑡xA
44 3 42 43 sylanbrc φkN-Locally A kLocally A
45 44 ex φkN-Locally A kLocally A
46 45 ssrdv φN-Locally A Locally A
47 llyssnlly Locally A N-Locally A
48 47 a1i φLocally A N-Locally A
49 46 48 eqssd φN-Locally A = Locally A