Description: If the property A passes to open subspaces, then a space is n-locally A iff it is locally A . (Contributed by Mario Carneiro, 2-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | restlly.1 | |
|
Assertion | restnlly | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | restlly.1 | |
|
2 | nllytop | |
|
3 | 2 | adantl | |
4 | nlly2i | |
|
5 | 4 | 3adant1l | |
6 | simprl | |
|
7 | simprr2 | |
|
8 | simplr | |
|
9 | 8 | elpwid | |
10 | 7 9 | sstrd | |
11 | velpw | |
|
12 | 10 11 | sylibr | |
13 | 6 12 | elind | |
14 | simprr1 | |
|
15 | simpll1 | |
|
16 | 15 2 | simpl2im | |
17 | restabs | |
|
18 | 16 7 8 17 | syl3anc | |
19 | df-ss | |
|
20 | 7 19 | sylib | |
21 | elrestr | |
|
22 | 16 8 6 21 | syl3anc | |
23 | 20 22 | eqeltrrd | |
24 | eleq2 | |
|
25 | oveq1 | |
|
26 | 25 | eleq1d | |
27 | 24 26 | imbi12d | |
28 | 15 | simpld | |
29 | 1 | expr | |
30 | 29 | ralrimiva | |
31 | 28 30 | syl | |
32 | simprr3 | |
|
33 | 27 31 32 | rspcdva | |
34 | 23 33 | mpd | |
35 | 18 34 | eqeltrrd | |
36 | 13 14 35 | jca32 | |
37 | 36 | ex | |
38 | 37 | reximdv2 | |
39 | 38 | rexlimdva | |
40 | 5 39 | mpd | |
41 | 40 | 3expb | |
42 | 41 | ralrimivva | |
43 | islly | |
|
44 | 3 42 43 | sylanbrc | |
45 | 44 | ex | |
46 | 45 | ssrdv | |
47 | llyssnlly | |
|
48 | 47 | a1i | |
49 | 46 48 | eqssd | |