Description: Restriction of a topology induced by an uniform structure. (Contributed by Thierry Arnoux, 12-Dec-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | restutop | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl | |
|
2 | fvexd | |
|
3 | elfvex | |
|
4 | 3 | adantr | |
5 | simpr | |
|
6 | 4 5 | ssexd | |
7 | elrest | |
|
8 | 2 6 7 | syl2anc | |
9 | 8 | biimpa | |
10 | inss2 | |
|
11 | sseq1 | |
|
12 | 10 11 | mpbiri | |
13 | 12 | rexlimivw | |
14 | 9 13 | syl | |
15 | simp-5l | |
|
16 | 15 | ad2antrr | |
17 | 6 | ad6antr | |
18 | 17 17 | xpexd | |
19 | simplr | |
|
20 | elrestr | |
|
21 | 16 18 19 20 | syl3anc | |
22 | inss1 | |
|
23 | imass1 | |
|
24 | 22 23 | ax-mp | |
25 | sstr | |
|
26 | 24 25 | mpan | |
27 | imassrn | |
|
28 | rnin | |
|
29 | 27 28 | sstri | |
30 | inss2 | |
|
31 | 29 30 | sstri | |
32 | rnxpid | |
|
33 | 31 32 | sseqtri | |
34 | 33 | a1i | |
35 | 26 34 | ssind | |
36 | 35 | adantl | |
37 | simpllr | |
|
38 | 36 37 | sseqtrrd | |
39 | imaeq1 | |
|
40 | 39 | sseq1d | |
41 | 40 | rspcev | |
42 | 21 38 41 | syl2anc | |
43 | simplr | |
|
44 | simpllr | |
|
45 | simpr | |
|
46 | 44 45 | eleqtrd | |
47 | 46 | elin1d | |
48 | elutop | |
|
49 | 48 | simplbda | |
50 | 49 | r19.21bi | |
51 | 15 43 47 50 | syl21anc | |
52 | 42 51 | r19.29a | |
53 | 9 | adantr | |
54 | 52 53 | r19.29a | |
55 | 54 | ralrimiva | |
56 | trust | |
|
57 | elutop | |
|
58 | 56 57 | syl | |
59 | 58 | biimpar | |
60 | 1 14 55 59 | syl12anc | |
61 | 60 | ex | |
62 | 61 | ssrdv | |