Description: The class of 0-regular simple graphs is a proper class. (Contributed by AV, 27-Dec-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | rgrusgrprc | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elopab | |
|
2 | f0bi | |
|
3 | opeq2 | |
|
4 | usgr0eop | |
|
5 | 4 | elv | |
6 | 3 5 | eqeltrdi | |
7 | vex | |
|
8 | vex | |
|
9 | 7 8 | opiedgfvi | |
10 | id | |
|
11 | 9 10 | eqtrid | |
12 | 6 11 | jca | |
13 | 2 12 | sylbi | |
14 | 13 | adantl | |
15 | eleq1 | |
|
16 | fveqeq2 | |
|
17 | 15 16 | anbi12d | |
18 | 17 | adantr | |
19 | 14 18 | mpbird | |
20 | fveqeq2 | |
|
21 | 20 | elrab | |
22 | 19 21 | sylibr | |
23 | 22 | exlimivv | |
24 | 1 23 | sylbi | |
25 | 24 | ssriv | |
26 | eqid | |
|
27 | 26 | griedg0prc | |
28 | prcssprc | |
|
29 | 25 27 28 | mp2an | |
30 | df-3an | |
|
31 | 30 | bicomi | |
32 | 31 | a1i | |
33 | 0xnn0 | |
|
34 | ibar | |
|
35 | 33 34 | mpan2 | |
36 | eqid | |
|
37 | eqid | |
|
38 | 36 37 | isrusgr0 | |
39 | 33 38 | mpan2 | |
40 | 32 35 39 | 3bitr4d | |
41 | 40 | rabbiia | |
42 | usgr0edg0rusgr | |
|
43 | usgruhgr | |
|
44 | uhgriedg0edg0 | |
|
45 | 43 44 | syl | |
46 | 42 45 | bitrd | |
47 | 46 | rabbiia | |
48 | 41 47 | eqtri | |
49 | neleq1 | |
|
50 | 48 49 | ax-mp | |
51 | 29 50 | mpbir | |