Metamath Proof Explorer


Theorem rgrusgrprc

Description: The class of 0-regular simple graphs is a proper class. (Contributed by AV, 27-Dec-2020)

Ref Expression
Assertion rgrusgrprc gUSGraph|vVtxgVtxDeggv=0V

Proof

Step Hyp Ref Expression
1 elopab pve|e:vep=vee:
2 f0bi e:e=
3 opeq2 e=ve=v
4 usgr0eop vVvUSGraph
5 4 elv vUSGraph
6 3 5 eqeltrdi e=veUSGraph
7 vex vV
8 vex eV
9 7 8 opiedgfvi iEdgve=e
10 id e=e=
11 9 10 eqtrid e=iEdgve=
12 6 11 jca e=veUSGraphiEdgve=
13 2 12 sylbi e:veUSGraphiEdgve=
14 13 adantl p=vee:veUSGraphiEdgve=
15 eleq1 p=vepUSGraphveUSGraph
16 fveqeq2 p=veiEdgp=iEdgve=
17 15 16 anbi12d p=vepUSGraphiEdgp=veUSGraphiEdgve=
18 17 adantr p=vee:pUSGraphiEdgp=veUSGraphiEdgve=
19 14 18 mpbird p=vee:pUSGraphiEdgp=
20 fveqeq2 g=piEdgg=iEdgp=
21 20 elrab pgUSGraph|iEdgg=pUSGraphiEdgp=
22 19 21 sylibr p=vee:pgUSGraph|iEdgg=
23 22 exlimivv vep=vee:pgUSGraph|iEdgg=
24 1 23 sylbi pve|e:pgUSGraph|iEdgg=
25 24 ssriv ve|e:gUSGraph|iEdgg=
26 eqid ve|e:=ve|e:
27 26 griedg0prc ve|e:V
28 prcssprc ve|e:gUSGraph|iEdgg=ve|e:VgUSGraph|iEdgg=V
29 25 27 28 mp2an gUSGraph|iEdgg=V
30 df-3an gUSGraph00*vVtxgVtxDeggv=0gUSGraph00*vVtxgVtxDeggv=0
31 30 bicomi gUSGraph00*vVtxgVtxDeggv=0gUSGraph00*vVtxgVtxDeggv=0
32 31 a1i gUSGraphgUSGraph00*vVtxgVtxDeggv=0gUSGraph00*vVtxgVtxDeggv=0
33 0xnn0 00*
34 ibar gUSGraph00*vVtxgVtxDeggv=0gUSGraph00*vVtxgVtxDeggv=0
35 33 34 mpan2 gUSGraphvVtxgVtxDeggv=0gUSGraph00*vVtxgVtxDeggv=0
36 eqid Vtxg=Vtxg
37 eqid VtxDegg=VtxDegg
38 36 37 isrusgr0 gUSGraph00*gRegUSGraph0gUSGraph00*vVtxgVtxDeggv=0
39 33 38 mpan2 gUSGraphgRegUSGraph0gUSGraph00*vVtxgVtxDeggv=0
40 32 35 39 3bitr4d gUSGraphvVtxgVtxDeggv=0gRegUSGraph0
41 40 rabbiia gUSGraph|vVtxgVtxDeggv=0=gUSGraph|gRegUSGraph0
42 usgr0edg0rusgr gUSGraphgRegUSGraph0Edgg=
43 usgruhgr gUSGraphgUHGraph
44 uhgriedg0edg0 gUHGraphEdgg=iEdgg=
45 43 44 syl gUSGraphEdgg=iEdgg=
46 42 45 bitrd gUSGraphgRegUSGraph0iEdgg=
47 46 rabbiia gUSGraph|gRegUSGraph0=gUSGraph|iEdgg=
48 41 47 eqtri gUSGraph|vVtxgVtxDeggv=0=gUSGraph|iEdgg=
49 neleq1 gUSGraph|vVtxgVtxDeggv=0=gUSGraph|iEdgg=gUSGraph|vVtxgVtxDeggv=0VgUSGraph|iEdgg=V
50 48 49 ax-mp gUSGraph|vVtxgVtxDeggv=0VgUSGraph|iEdgg=V
51 29 50 mpbir gUSGraph|vVtxgVtxDeggv=0V