Description: The unital ring homomorphisms between unital rings (in a universe) are a subcategory subset of the mappings between base sets of extensible structures (in the same universe). (Contributed by AV, 9-Mar-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rhmsscmap.u | |
|
rhmsscmap.r | |
||
Assertion | rhmsscmap | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rhmsscmap.u | |
|
2 | rhmsscmap.r | |
|
3 | inss2 | |
|
4 | 2 3 | eqsstrdi | |
5 | eqid | |
|
6 | eqid | |
|
7 | 5 6 | rhmf | |
8 | simpr | |
|
9 | fvex | |
|
10 | fvex | |
|
11 | 9 10 | pm3.2i | |
12 | elmapg | |
|
13 | 11 12 | mp1i | |
14 | 8 13 | mpbird | |
15 | 14 | ex | |
16 | 7 15 | syl5 | |
17 | 16 | ssrdv | |
18 | ovres | |
|
19 | 18 | adantl | |
20 | eqidd | |
|
21 | fveq2 | |
|
22 | fveq2 | |
|
23 | 21 22 | oveqan12rd | |
24 | 23 | adantl | |
25 | 4 | sseld | |
26 | 25 | com12 | |
27 | 26 | adantr | |
28 | 27 | impcom | |
29 | 4 | sseld | |
30 | 29 | com12 | |
31 | 30 | adantl | |
32 | 31 | impcom | |
33 | ovexd | |
|
34 | 20 24 28 32 33 | ovmpod | |
35 | 17 19 34 | 3sstr4d | |
36 | 35 | ralrimivva | |
37 | rhmfn | |
|
38 | 37 | a1i | |
39 | inss1 | |
|
40 | 2 39 | eqsstrdi | |
41 | xpss12 | |
|
42 | 40 40 41 | syl2anc | |
43 | fnssres | |
|
44 | 38 42 43 | syl2anc | |
45 | eqid | |
|
46 | ovex | |
|
47 | 45 46 | fnmpoi | |
48 | 47 | a1i | |
49 | elex | |
|
50 | 1 49 | syl | |
51 | 44 48 50 | isssc | |
52 | 4 36 51 | mpbir2and | |