Metamath Proof Explorer


Theorem rhmsscmap

Description: The unital ring homomorphisms between unital rings (in a universe) are a subcategory subset of the mappings between base sets of extensible structures (in the same universe). (Contributed by AV, 9-Mar-2020)

Ref Expression
Hypotheses rhmsscmap.u φ U V
rhmsscmap.r φ R = Ring U
Assertion rhmsscmap φ RingHom R × R cat x U , y U Base y Base x

Proof

Step Hyp Ref Expression
1 rhmsscmap.u φ U V
2 rhmsscmap.r φ R = Ring U
3 inss2 Ring U U
4 2 3 eqsstrdi φ R U
5 eqid Base a = Base a
6 eqid Base b = Base b
7 5 6 rhmf h a RingHom b h : Base a Base b
8 simpr φ a R b R h : Base a Base b h : Base a Base b
9 fvex Base b V
10 fvex Base a V
11 9 10 pm3.2i Base b V Base a V
12 elmapg Base b V Base a V h Base b Base a h : Base a Base b
13 11 12 mp1i φ a R b R h : Base a Base b h Base b Base a h : Base a Base b
14 8 13 mpbird φ a R b R h : Base a Base b h Base b Base a
15 14 ex φ a R b R h : Base a Base b h Base b Base a
16 7 15 syl5 φ a R b R h a RingHom b h Base b Base a
17 16 ssrdv φ a R b R a RingHom b Base b Base a
18 ovres a R b R a RingHom R × R b = a RingHom b
19 18 adantl φ a R b R a RingHom R × R b = a RingHom b
20 eqidd φ a R b R x U , y U Base y Base x = x U , y U Base y Base x
21 fveq2 y = b Base y = Base b
22 fveq2 x = a Base x = Base a
23 21 22 oveqan12rd x = a y = b Base y Base x = Base b Base a
24 23 adantl φ a R b R x = a y = b Base y Base x = Base b Base a
25 4 sseld φ a R a U
26 25 com12 a R φ a U
27 26 adantr a R b R φ a U
28 27 impcom φ a R b R a U
29 4 sseld φ b R b U
30 29 com12 b R φ b U
31 30 adantl a R b R φ b U
32 31 impcom φ a R b R b U
33 ovexd φ a R b R Base b Base a V
34 20 24 28 32 33 ovmpod φ a R b R a x U , y U Base y Base x b = Base b Base a
35 17 19 34 3sstr4d φ a R b R a RingHom R × R b a x U , y U Base y Base x b
36 35 ralrimivva φ a R b R a RingHom R × R b a x U , y U Base y Base x b
37 rhmfn RingHom Fn Ring × Ring
38 37 a1i φ RingHom Fn Ring × Ring
39 inss1 Ring U Ring
40 2 39 eqsstrdi φ R Ring
41 xpss12 R Ring R Ring R × R Ring × Ring
42 40 40 41 syl2anc φ R × R Ring × Ring
43 fnssres RingHom Fn Ring × Ring R × R Ring × Ring RingHom R × R Fn R × R
44 38 42 43 syl2anc φ RingHom R × R Fn R × R
45 eqid x U , y U Base y Base x = x U , y U Base y Base x
46 ovex Base y Base x V
47 45 46 fnmpoi x U , y U Base y Base x Fn U × U
48 47 a1i φ x U , y U Base y Base x Fn U × U
49 elex U V U V
50 1 49 syl φ U V
51 44 48 50 isssc φ RingHom R × R cat x U , y U Base y Base x R U a R b R a RingHom R × R b a x U , y U Base y Base x b
52 4 36 51 mpbir2and φ RingHom R × R cat x U , y U Base y Base x