Metamath Proof Explorer


Theorem rhmsscmap

Description: The unital ring homomorphisms between unital rings (in a universe) are a subcategory subset of the mappings between base sets of extensible structures (in the same universe). (Contributed by AV, 9-Mar-2020)

Ref Expression
Hypotheses rhmsscmap.u φUV
rhmsscmap.r φR=RingU
Assertion rhmsscmap φRingHomR×RcatxU,yUBaseyBasex

Proof

Step Hyp Ref Expression
1 rhmsscmap.u φUV
2 rhmsscmap.r φR=RingU
3 inss2 RingUU
4 2 3 eqsstrdi φRU
5 eqid Basea=Basea
6 eqid Baseb=Baseb
7 5 6 rhmf haRingHombh:BaseaBaseb
8 simpr φaRbRh:BaseaBasebh:BaseaBaseb
9 fvex BasebV
10 fvex BaseaV
11 9 10 pm3.2i BasebVBaseaV
12 elmapg BasebVBaseaVhBasebBaseah:BaseaBaseb
13 11 12 mp1i φaRbRh:BaseaBasebhBasebBaseah:BaseaBaseb
14 8 13 mpbird φaRbRh:BaseaBasebhBasebBasea
15 14 ex φaRbRh:BaseaBasebhBasebBasea
16 7 15 syl5 φaRbRhaRingHombhBasebBasea
17 16 ssrdv φaRbRaRingHombBasebBasea
18 ovres aRbRaRingHomR×Rb=aRingHomb
19 18 adantl φaRbRaRingHomR×Rb=aRingHomb
20 eqidd φaRbRxU,yUBaseyBasex=xU,yUBaseyBasex
21 fveq2 y=bBasey=Baseb
22 fveq2 x=aBasex=Basea
23 21 22 oveqan12rd x=ay=bBaseyBasex=BasebBasea
24 23 adantl φaRbRx=ay=bBaseyBasex=BasebBasea
25 4 sseld φaRaU
26 25 com12 aRφaU
27 26 adantr aRbRφaU
28 27 impcom φaRbRaU
29 4 sseld φbRbU
30 29 com12 bRφbU
31 30 adantl aRbRφbU
32 31 impcom φaRbRbU
33 ovexd φaRbRBasebBaseaV
34 20 24 28 32 33 ovmpod φaRbRaxU,yUBaseyBasexb=BasebBasea
35 17 19 34 3sstr4d φaRbRaRingHomR×RbaxU,yUBaseyBasexb
36 35 ralrimivva φaRbRaRingHomR×RbaxU,yUBaseyBasexb
37 rhmfn RingHomFnRing×Ring
38 37 a1i φRingHomFnRing×Ring
39 inss1 RingURing
40 2 39 eqsstrdi φRRing
41 xpss12 RRingRRingR×RRing×Ring
42 40 40 41 syl2anc φR×RRing×Ring
43 fnssres RingHomFnRing×RingR×RRing×RingRingHomR×RFnR×R
44 38 42 43 syl2anc φRingHomR×RFnR×R
45 eqid xU,yUBaseyBasex=xU,yUBaseyBasex
46 ovex BaseyBasexV
47 45 46 fnmpoi xU,yUBaseyBasexFnU×U
48 47 a1i φxU,yUBaseyBasexFnU×U
49 elex UVUV
50 1 49 syl φUV
51 44 48 50 isssc φRingHomR×RcatxU,yUBaseyBasexRUaRbRaRingHomR×RbaxU,yUBaseyBasexb
52 4 36 51 mpbir2and φRingHomR×RcatxU,yUBaseyBasex