Metamath Proof Explorer


Theorem rhmsubcsetclem2

Description: Lemma 2 for rhmsubcsetc . (Contributed by AV, 9-Mar-2020)

Ref Expression
Hypotheses rhmsubcsetc.c C=ExtStrCatU
rhmsubcsetc.u φUV
rhmsubcsetc.b φB=RingU
rhmsubcsetc.h φH=RingHomB×B
Assertion rhmsubcsetclem2 φxByBzBfxHygyHzgxycompCzfxHz

Proof

Step Hyp Ref Expression
1 rhmsubcsetc.c C=ExtStrCatU
2 rhmsubcsetc.u φUV
3 rhmsubcsetc.b φB=RingU
4 rhmsubcsetc.h φH=RingHomB×B
5 simpl φxBφ
6 5 adantr φxByBzBφ
7 6 adantr φxByBzBfxHygyHzφ
8 simpr φxByBzByBzB
9 8 adantr φxByBzBfxHygyHzyBzB
10 simpr fxHygyHzgyHz
11 10 adantl φxByBzBfxHygyHzgyHz
12 4 rhmresel φyBzBgyHzgyRingHomz
13 7 9 11 12 syl3anc φxByBzBfxHygyHzgyRingHomz
14 simpr φxBxB
15 simpl yBzByB
16 14 15 anim12i φxByBzBxByB
17 16 adantr φxByBzBfxHygyHzxByB
18 simprl φxByBzBfxHygyHzfxHy
19 4 rhmresel φxByBfxHyfxRingHomy
20 7 17 18 19 syl3anc φxByBzBfxHygyHzfxRingHomy
21 rhmco gyRingHomzfxRingHomygfxRingHomz
22 13 20 21 syl2anc φxByBzBfxHygyHzgfxRingHomz
23 2 ad3antrrr φxByBzBfxHygyHzUV
24 eqid compC=compC
25 3 eleq2d φxBxRingU
26 elinel2 xRingUxU
27 25 26 syl6bi φxBxU
28 27 imp φxBxU
29 28 adantr φxByBzBxU
30 29 adantr φxByBzBfxHygyHzxU
31 3 eleq2d φyByRingU
32 elinel2 yRingUyU
33 31 32 syl6bi φyByU
34 33 adantr φxByByU
35 34 com12 yBφxByU
36 35 adantr yBzBφxByU
37 36 impcom φxByBzByU
38 37 adantr φxByBzBfxHygyHzyU
39 3 eleq2d φzBzRingU
40 elinel2 zRingUzU
41 39 40 syl6bi φzBzU
42 41 adantr φxBzBzU
43 42 adantld φxByBzBzU
44 43 imp φxByBzBzU
45 44 adantr φxByBzBfxHygyHzzU
46 eqid Basex=Basex
47 eqid Basey=Basey
48 eqid Basez=Basez
49 simprl yBφxBφ
50 49 adantr yBφxBfxHyφ
51 14 anim1i φxByBxByB
52 51 ancoms yBφxBxByB
53 52 adantr yBφxBfxHyxByB
54 simpr yBφxBfxHyfxHy
55 50 53 54 19 syl3anc yBφxBfxHyfxRingHomy
56 46 47 rhmf fxRingHomyf:BasexBasey
57 55 56 syl yBφxBfxHyf:BasexBasey
58 57 ex yBφxBfxHyf:BasexBasey
59 58 ex yBφxBfxHyf:BasexBasey
60 59 adantr yBzBφxBfxHyf:BasexBasey
61 60 impcom φxByBzBfxHyf:BasexBasey
62 61 com12 fxHyφxByBzBf:BasexBasey
63 62 adantr fxHygyHzφxByBzBf:BasexBasey
64 63 impcom φxByBzBfxHygyHzf:BasexBasey
65 12 3expa φyBzBgyHzgyRingHomz
66 47 48 rhmf gyRingHomzg:BaseyBasez
67 65 66 syl φyBzBgyHzg:BaseyBasez
68 67 ex φyBzBgyHzg:BaseyBasez
69 68 adantlr φxByBzBgyHzg:BaseyBasez
70 69 adantld φxByBzBfxHygyHzg:BaseyBasez
71 70 imp φxByBzBfxHygyHzg:BaseyBasez
72 1 23 24 30 38 45 46 47 48 64 71 estrcco φxByBzBfxHygyHzgxycompCzf=gf
73 4 adantr φxBH=RingHomB×B
74 73 oveqdr φxByBzBxHz=xRingHomB×Bz
75 ovres xBzBxRingHomB×Bz=xRingHomz
76 75 ad2ant2l φxByBzBxRingHomB×Bz=xRingHomz
77 74 76 eqtrd φxByBzBxHz=xRingHomz
78 77 adantr φxByBzBfxHygyHzxHz=xRingHomz
79 22 72 78 3eltr4d φxByBzBfxHygyHzgxycompCzfxHz
80 79 ralrimivva φxByBzBfxHygyHzgxycompCzfxHz
81 80 ralrimivva φxByBzBfxHygyHzgxycompCzfxHz