Metamath Proof Explorer


Theorem rlimdmafv2

Description: Two ways to express that a function has a limit, analogous to rlimdm . (Contributed by AV, 5-Sep-2022)

Ref Expression
Hypotheses rlimdmafv2.1 φF:A
rlimdmafv2.2 φsupA*<=+∞
Assertion rlimdmafv2 φFdomF''''F

Proof

Step Hyp Ref Expression
1 rlimdmafv2.1 φF:A
2 rlimdmafv2.2 φsupA*<=+∞
3 eldmg FdomFdomxFx
4 3 ibi FdomxFx
5 simpr φFxFx
6 rlimrel Rel
7 6 brrelex1i FxFV
8 7 adantl φFxFV
9 vex xV
10 9 a1i φFxxV
11 breldmg FVxVFxFdom
12 8 10 5 11 syl3anc φFxFdom
13 breq2 y=xFyFx
14 13 biimprd y=xFxFy
15 14 spimevw FxyFy
16 15 adantl φFxyFy
17 1 adantr φFxF:A
18 17 adantr φFxFyFzF:A
19 2 adantr φFxsupA*<=+∞
20 19 adantr φFxFyFzsupA*<=+∞
21 simprl φFxFyFzFy
22 simprr φFxFyFzFz
23 18 20 21 22 rlimuni φFxFyFzy=z
24 23 ex φFxFyFzy=z
25 24 alrimivv φFxyzFyFzy=z
26 breq2 y=zFyFz
27 26 eu4 ∃!yFyyFyyzFyFzy=z
28 16 25 27 sylanbrc φFx∃!yFy
29 dfdfat2 defAtFFdom∃!yFy
30 12 28 29 sylanbrc φFxdefAtF
31 dfatafv2iota defAtF''''F=ιw|Fw
32 30 31 syl φFx''''F=ιw|Fw
33 1 adantr φFxFwF:A
34 2 adantr φFxFwsupA*<=+∞
35 simprr φFxFwFw
36 simprl φFxFwFx
37 33 34 35 36 rlimuni φFxFww=x
38 37 expr φFxFww=x
39 breq2 w=xFwFx
40 5 39 syl5ibrcom φFxw=xFw
41 38 40 impbid φFxFww=x
42 41 adantr φFxxVFww=x
43 42 iota5 φFxxVιw|Fw=x
44 43 elvd φFxιw|Fw=x
45 32 44 eqtrd φFx''''F=x
46 5 45 breqtrrd φFxF''''F
47 46 ex φFxF''''F
48 47 exlimdv φxFxF''''F
49 4 48 syl5 φFdomF''''F
50 6 releldmi F''''FFdom
51 49 50 impbid1 φFdomF''''F