Metamath Proof Explorer


Theorem rmodislmodlem

Description: Lemma for rmodislmod . This is the part of the proof of rmodislmod which requires the scalar ring to be commutative. (Contributed by AV, 3-Dec-2021)

Ref Expression
Hypotheses rmodislmod.v V=BaseR
rmodislmod.a +˙=+R
rmodislmod.s ·˙=R
rmodislmod.f F=ScalarR
rmodislmod.k K=BaseF
rmodislmod.p ˙=+F
rmodislmod.t ×˙=F
rmodislmod.u 1˙=1F
rmodislmod.r RGrpFRingqKrKxVwVw·˙rVw+˙x·˙r=w·˙r+˙x·˙rw·˙q˙r=w·˙q+˙w·˙rw·˙q×˙r=w·˙q·˙rw·˙1˙=w
rmodislmod.m ˙=sK,vVv·˙s
rmodislmod.l L=RsSetndx˙
Assertion rmodislmodlem FCRingaKbKcVa×˙b˙c=a˙b˙c

Proof

Step Hyp Ref Expression
1 rmodislmod.v V=BaseR
2 rmodislmod.a +˙=+R
3 rmodislmod.s ·˙=R
4 rmodislmod.f F=ScalarR
5 rmodislmod.k K=BaseF
6 rmodislmod.p ˙=+F
7 rmodislmod.t ×˙=F
8 rmodislmod.u 1˙=1F
9 rmodislmod.r RGrpFRingqKrKxVwVw·˙rVw+˙x·˙r=w·˙r+˙x·˙rw·˙q˙r=w·˙q+˙w·˙rw·˙q×˙r=w·˙q·˙rw·˙1˙=w
10 rmodislmod.m ˙=sK,vVv·˙s
11 rmodislmod.l L=RsSetndx˙
12 simprl w·˙rVw+˙x·˙r=w·˙r+˙x·˙rw·˙q˙r=w·˙q+˙w·˙rw·˙q×˙r=w·˙q·˙rw·˙1˙=ww·˙q×˙r=w·˙q·˙r
13 12 2ralimi xVwVw·˙rVw+˙x·˙r=w·˙r+˙x·˙rw·˙q˙r=w·˙q+˙w·˙rw·˙q×˙r=w·˙q·˙rw·˙1˙=wxVwVw·˙q×˙r=w·˙q·˙r
14 13 2ralimi qKrKxVwVw·˙rVw+˙x·˙r=w·˙r+˙x·˙rw·˙q˙r=w·˙q+˙w·˙rw·˙q×˙r=w·˙q·˙rw·˙1˙=wqKrKxVwVw·˙q×˙r=w·˙q·˙r
15 ralrot3 qKrKxVwVw·˙q×˙r=w·˙q·˙rxVqKrKwVw·˙q×˙r=w·˙q·˙r
16 1 grpbn0 RGrpV
17 16 3ad2ant1 RGrpFRingqKrKxVwVw·˙rVw+˙x·˙r=w·˙r+˙x·˙rw·˙q˙r=w·˙q+˙w·˙rw·˙q×˙r=w·˙q·˙rw·˙1˙=wV
18 9 17 ax-mp V
19 rspn0 VxVqKrKwVw·˙q×˙r=w·˙q·˙rqKrKwVw·˙q×˙r=w·˙q·˙r
20 18 19 ax-mp xVqKrKwVw·˙q×˙r=w·˙q·˙rqKrKwVw·˙q×˙r=w·˙q·˙r
21 oveq1 q=bq×˙r=b×˙r
22 21 oveq2d q=bw·˙q×˙r=w·˙b×˙r
23 oveq2 q=bw·˙q=w·˙b
24 23 oveq1d q=bw·˙q·˙r=w·˙b·˙r
25 22 24 eqeq12d q=bw·˙q×˙r=w·˙q·˙rw·˙b×˙r=w·˙b·˙r
26 oveq2 r=ab×˙r=b×˙a
27 26 oveq2d r=aw·˙b×˙r=w·˙b×˙a
28 oveq2 r=aw·˙b·˙r=w·˙b·˙a
29 27 28 eqeq12d r=aw·˙b×˙r=w·˙b·˙rw·˙b×˙a=w·˙b·˙a
30 oveq1 w=cw·˙b×˙a=c·˙b×˙a
31 oveq1 w=cw·˙b=c·˙b
32 31 oveq1d w=cw·˙b·˙a=c·˙b·˙a
33 30 32 eqeq12d w=cw·˙b×˙a=w·˙b·˙ac·˙b×˙a=c·˙b·˙a
34 25 29 33 rspc3v bKaKcVqKrKwVw·˙q×˙r=w·˙q·˙rc·˙b×˙a=c·˙b·˙a
35 34 3com12 aKbKcVqKrKwVw·˙q×˙r=w·˙q·˙rc·˙b×˙a=c·˙b·˙a
36 20 35 syl5com xVqKrKwVw·˙q×˙r=w·˙q·˙raKbKcVc·˙b×˙a=c·˙b·˙a
37 15 36 sylbi qKrKxVwVw·˙q×˙r=w·˙q·˙raKbKcVc·˙b×˙a=c·˙b·˙a
38 eqcom c·˙b·˙a=c·˙b×˙ac·˙b×˙a=c·˙b·˙a
39 37 38 syl6ibr qKrKxVwVw·˙q×˙r=w·˙q·˙raKbKcVc·˙b·˙a=c·˙b×˙a
40 14 39 syl qKrKxVwVw·˙rVw+˙x·˙r=w·˙r+˙x·˙rw·˙q˙r=w·˙q+˙w·˙rw·˙q×˙r=w·˙q·˙rw·˙1˙=waKbKcVc·˙b·˙a=c·˙b×˙a
41 40 3ad2ant3 RGrpFRingqKrKxVwVw·˙rVw+˙x·˙r=w·˙r+˙x·˙rw·˙q˙r=w·˙q+˙w·˙rw·˙q×˙r=w·˙q·˙rw·˙1˙=waKbKcVc·˙b·˙a=c·˙b×˙a
42 9 41 ax-mp aKbKcVc·˙b·˙a=c·˙b×˙a
43 42 adantl FCRingaKbKcVc·˙b·˙a=c·˙b×˙a
44 5 7 crngcom FCRingbKaKb×˙a=a×˙b
45 44 3expb FCRingbKaKb×˙a=a×˙b
46 45 expcom bKaKFCRingb×˙a=a×˙b
47 46 ancoms aKbKFCRingb×˙a=a×˙b
48 47 3adant3 aKbKcVFCRingb×˙a=a×˙b
49 48 impcom FCRingaKbKcVb×˙a=a×˙b
50 49 oveq2d FCRingaKbKcVc·˙b×˙a=c·˙a×˙b
51 43 50 eqtrd FCRingaKbKcVc·˙b·˙a=c·˙a×˙b
52 10 a1i aKbKcV˙=sK,vVv·˙s
53 oveq12 v=cs=bv·˙s=c·˙b
54 53 ancoms s=bv=cv·˙s=c·˙b
55 54 adantl aKbKcVs=bv=cv·˙s=c·˙b
56 simp2 aKbKcVbK
57 simp3 aKbKcVcV
58 ovexd aKbKcVc·˙bV
59 52 55 56 57 58 ovmpod aKbKcVb˙c=c·˙b
60 59 oveq2d aKbKcVa˙b˙c=a˙c·˙b
61 oveq12 v=c·˙bs=av·˙s=c·˙b·˙a
62 61 ancoms s=av=c·˙bv·˙s=c·˙b·˙a
63 62 adantl aKbKcVs=av=c·˙bv·˙s=c·˙b·˙a
64 simp1 aKbKcVaK
65 simpl1 w·˙rVw+˙x·˙r=w·˙r+˙x·˙rw·˙q˙r=w·˙q+˙w·˙rw·˙q×˙r=w·˙q·˙rw·˙1˙=ww·˙rV
66 65 2ralimi xVwVw·˙rVw+˙x·˙r=w·˙r+˙x·˙rw·˙q˙r=w·˙q+˙w·˙rw·˙q×˙r=w·˙q·˙rw·˙1˙=wxVwVw·˙rV
67 66 2ralimi qKrKxVwVw·˙rVw+˙x·˙r=w·˙r+˙x·˙rw·˙q˙r=w·˙q+˙w·˙rw·˙q×˙r=w·˙q·˙rw·˙1˙=wqKrKxVwVw·˙rV
68 ringgrp FRingFGrp
69 5 grpbn0 FGrpK
70 68 69 syl FRingK
71 70 3ad2ant2 RGrpFRingqKrKxVwVw·˙rVw+˙x·˙r=w·˙r+˙x·˙rw·˙q˙r=w·˙q+˙w·˙rw·˙q×˙r=w·˙q·˙rw·˙1˙=wK
72 9 71 ax-mp K
73 rspn0 KqKrKxVwVw·˙rVrKxVwVw·˙rV
74 72 73 ax-mp qKrKxVwVw·˙rVrKxVwVw·˙rV
75 ralcom rKxVwVw·˙rVxVrKwVw·˙rV
76 rspn0 VxVrKwVw·˙rVrKwVw·˙rV
77 18 76 ax-mp xVrKwVw·˙rVrKwVw·˙rV
78 oveq2 r=bw·˙r=w·˙b
79 78 eleq1d r=bw·˙rVw·˙bV
80 31 eleq1d w=cw·˙bVc·˙bV
81 79 80 rspc2v bKcVrKwVw·˙rVc·˙bV
82 77 81 syl5com xVrKwVw·˙rVbKcVc·˙bV
83 75 82 sylbi rKxVwVw·˙rVbKcVc·˙bV
84 67 74 83 3syl qKrKxVwVw·˙rVw+˙x·˙r=w·˙r+˙x·˙rw·˙q˙r=w·˙q+˙w·˙rw·˙q×˙r=w·˙q·˙rw·˙1˙=wbKcVc·˙bV
85 84 3ad2ant3 RGrpFRingqKrKxVwVw·˙rVw+˙x·˙r=w·˙r+˙x·˙rw·˙q˙r=w·˙q+˙w·˙rw·˙q×˙r=w·˙q·˙rw·˙1˙=wbKcVc·˙bV
86 9 85 ax-mp bKcVc·˙bV
87 86 3adant1 aKbKcVc·˙bV
88 ovexd aKbKcVc·˙b·˙aV
89 52 63 64 87 88 ovmpod aKbKcVa˙c·˙b=c·˙b·˙a
90 60 89 eqtrd aKbKcVa˙b˙c=c·˙b·˙a
91 90 adantl FCRingaKbKcVa˙b˙c=c·˙b·˙a
92 oveq12 v=cs=a×˙bv·˙s=c·˙a×˙b
93 92 ancoms s=a×˙bv=cv·˙s=c·˙a×˙b
94 93 adantl aKbKcVs=a×˙bv=cv·˙s=c·˙a×˙b
95 5 7 ringcl FRingaKbKa×˙bK
96 95 3expib FRingaKbKa×˙bK
97 96 3ad2ant2 RGrpFRingqKrKxVwVw·˙rVw+˙x·˙r=w·˙r+˙x·˙rw·˙q˙r=w·˙q+˙w·˙rw·˙q×˙r=w·˙q·˙rw·˙1˙=waKbKa×˙bK
98 9 97 ax-mp aKbKa×˙bK
99 98 3adant3 aKbKcVa×˙bK
100 ovexd aKbKcVc·˙a×˙bV
101 52 94 99 57 100 ovmpod aKbKcVa×˙b˙c=c·˙a×˙b
102 101 adantl FCRingaKbKcVa×˙b˙c=c·˙a×˙b
103 51 91 102 3eqtr4rd FCRingaKbKcVa×˙b˙c=a˙b˙c