Metamath Proof Explorer


Theorem rmxm1

Description: Subtraction of 1 formula for X sequence. Part 1 of equation 2.10 of JonesMatijasevic p. 695. (Contributed by Stefan O'Rear, 14-Oct-2014)

Ref Expression
Assertion rmxm1 A2NAXrmN1=AAXrmNA21AYrmN

Proof

Step Hyp Ref Expression
1 neg1z 1
2 rmxadd A2N1AXrmN+-1=AXrmNAXrm-1+A21AYrmNAYrm-1
3 1 2 mp3an3 A2NAXrmN+-1=AXrmNAXrm-1+A21AYrmNAYrm-1
4 1z 1
5 rmxneg A21AXrm-1=AXrm1
6 4 5 mpan2 A2AXrm-1=AXrm1
7 rmx1 A2AXrm1=A
8 6 7 eqtrd A2AXrm-1=A
9 8 adantr A2NAXrm-1=A
10 9 oveq2d A2NAXrmNAXrm-1=AXrmNA
11 frmx Xrm:2×0
12 11 fovcl A2NAXrmN0
13 12 nn0cnd A2NAXrmN
14 eluzelcn A2A
15 14 adantr A2NA
16 13 15 mulcomd A2NAXrmNA=AAXrmN
17 10 16 eqtrd A2NAXrmNAXrm-1=AAXrmN
18 rmyneg A21AYrm-1=AYrm1
19 4 18 mpan2 A2AYrm-1=AYrm1
20 rmy1 A2AYrm1=1
21 20 negeqd A2AYrm1=1
22 19 21 eqtrd A2AYrm-1=1
23 22 oveq2d A2AYrmNAYrm-1=AYrmN-1
24 23 adantr A2NAYrmNAYrm-1=AYrmN-1
25 frmy Yrm:2×
26 25 fovcl A2NAYrmN
27 26 zcnd A2NAYrmN
28 ax-1cn 1
29 mulneg2 AYrmN1AYrmN-1=AYrmN1
30 27 28 29 sylancl A2NAYrmN-1=AYrmN1
31 27 mulridd A2NAYrmN1=AYrmN
32 31 negeqd A2NAYrmN1=AYrmN
33 30 32 eqtrd A2NAYrmN-1=AYrmN
34 24 33 eqtrd A2NAYrmNAYrm-1=AYrmN
35 34 oveq2d A2NA21AYrmNAYrm-1=A21AYrmN
36 rmspecnonsq A2A21
37 36 eldifad A2A21
38 37 nncnd A2A21
39 38 adantr A2NA21
40 39 27 mulneg2d A2NA21AYrmN=A21AYrmN
41 35 40 eqtrd A2NA21AYrmNAYrm-1=A21AYrmN
42 17 41 oveq12d A2NAXrmNAXrm-1+A21AYrmNAYrm-1=AAXrmN+A21AYrmN
43 3 42 eqtrd A2NAXrmN+-1=AAXrmN+A21AYrmN
44 zcn NN
45 44 adantl A2NN
46 negsub N1N+-1=N1
47 45 28 46 sylancl A2NN+-1=N1
48 47 oveq2d A2NAXrmN+-1=AXrmN1
49 15 13 mulcld A2NAAXrmN
50 39 27 mulcld A2NA21AYrmN
51 49 50 negsubd A2NAAXrmN+A21AYrmN=AAXrmNA21AYrmN
52 43 48 51 3eqtr3d A2NAXrmN1=AAXrmNA21AYrmN