Metamath Proof Explorer


Theorem rnglidlmmgm

Description: The multiplicative group of a (left) ideal of a non-unital ring is a magma. (Contributed by AV, 17-Feb-2020) Generalization for non-unital rings. The assumption .0. e. U is required because a left ideal of a non-unital ring does not have to be a subgroup. (Revised by AV, 11-Mar-2025)

Ref Expression
Hypotheses rnglidlabl.l L=LIdealR
rnglidlabl.i I=R𝑠U
rnglidlabl.z 0˙=0R
Assertion rnglidlmmgm RRngUL0˙UmulGrpIMgm

Proof

Step Hyp Ref Expression
1 rnglidlabl.l L=LIdealR
2 rnglidlabl.i I=R𝑠U
3 rnglidlabl.z 0˙=0R
4 simp1 RRngUL0˙URRng
5 1 2 lidlbas ULBaseI=U
6 eleq1a ULBaseI=UBaseIL
7 5 6 mpd ULBaseIL
8 7 3ad2ant2 RRngUL0˙UBaseIL
9 5 eqcomd ULU=BaseI
10 9 eleq2d UL0˙U0˙BaseI
11 10 biimpa UL0˙U0˙BaseI
12 11 3adant1 RRngUL0˙U0˙BaseI
13 4 8 12 3jca RRngUL0˙URRngBaseIL0˙BaseI
14 1 2 lidlssbas ULBaseIBaseR
15 14 sseld ULaBaseIaBaseR
16 15 3ad2ant2 RRngUL0˙UaBaseIaBaseR
17 16 anim1d RRngUL0˙UaBaseIbBaseIaBaseRbBaseI
18 17 imp RRngUL0˙UaBaseIbBaseIaBaseRbBaseI
19 eqid BaseR=BaseR
20 eqid R=R
21 3 19 20 1 rnglidlmcl RRngBaseIL0˙BaseIaBaseRbBaseIaRbBaseI
22 13 18 21 syl2an2r RRngUL0˙UaBaseIbBaseIaRbBaseI
23 2 20 ressmulr ULR=I
24 23 eqcomd ULI=R
25 24 oveqd ULaIb=aRb
26 25 eleq1d ULaIbBaseIaRbBaseI
27 26 3ad2ant2 RRngUL0˙UaIbBaseIaRbBaseI
28 27 adantr RRngUL0˙UaBaseIbBaseIaIbBaseIaRbBaseI
29 22 28 mpbird RRngUL0˙UaBaseIbBaseIaIbBaseI
30 29 ralrimivva RRngUL0˙UaBaseIbBaseIaIbBaseI
31 fvex mulGrpIV
32 eqid mulGrpI=mulGrpI
33 eqid BaseI=BaseI
34 32 33 mgpbas BaseI=BasemulGrpI
35 eqid I=I
36 32 35 mgpplusg I=+mulGrpI
37 34 36 ismgm mulGrpIVmulGrpIMgmaBaseIbBaseIaIbBaseI
38 31 37 mp1i RRngUL0˙UmulGrpIMgmaBaseIbBaseIaIbBaseI
39 30 38 mpbird RRngUL0˙UmulGrpIMgm