Description: The multiplicative group of a (left) ideal of a non-unital ring is a magma. (Contributed by AV, 17-Feb-2020) Generalization for non-unital rings. The assumption .0. e. U is required because a left ideal of a non-unital ring does not have to be a subgroup. (Revised by AV, 11-Mar-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rnglidlabl.l | |
|
rnglidlabl.i | |
||
rnglidlabl.z | |
||
Assertion | rnglidlmmgm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnglidlabl.l | |
|
2 | rnglidlabl.i | |
|
3 | rnglidlabl.z | |
|
4 | simp1 | |
|
5 | 1 2 | lidlbas | |
6 | eleq1a | |
|
7 | 5 6 | mpd | |
8 | 7 | 3ad2ant2 | |
9 | 5 | eqcomd | |
10 | 9 | eleq2d | |
11 | 10 | biimpa | |
12 | 11 | 3adant1 | |
13 | 4 8 12 | 3jca | |
14 | 1 2 | lidlssbas | |
15 | 14 | sseld | |
16 | 15 | 3ad2ant2 | |
17 | 16 | anim1d | |
18 | 17 | imp | |
19 | eqid | |
|
20 | eqid | |
|
21 | 3 19 20 1 | rnglidlmcl | |
22 | 13 18 21 | syl2an2r | |
23 | 2 20 | ressmulr | |
24 | 23 | eqcomd | |
25 | 24 | oveqd | |
26 | 25 | eleq1d | |
27 | 26 | 3ad2ant2 | |
28 | 27 | adantr | |
29 | 22 28 | mpbird | |
30 | 29 | ralrimivva | |
31 | fvex | |
|
32 | eqid | |
|
33 | eqid | |
|
34 | 32 33 | mgpbas | |
35 | eqid | |
|
36 | 32 35 | mgpplusg | |
37 | 34 36 | ismgm | |
38 | 31 37 | mp1i | |
39 | 30 38 | mpbird | |