Metamath Proof Explorer


Theorem rngqipring1

Description: The ring unity of the product of the quotient with a two-sided ideal and the two-sided ideal, which both are rings. (Contributed by AV, 16-Mar-2025)

Ref Expression
Hypotheses rngqiprngfu.r φRRng
rngqiprngfu.i φI2IdealR
rngqiprngfu.j J=R𝑠I
rngqiprngfu.u φJRing
rngqiprngfu.b B=BaseR
rngqiprngfu.t ·˙=R
rngqiprngfu.1 1˙=1J
rngqiprngfu.g ˙=R~QGI
rngqiprngfu.q Q=R/𝑠˙
rngqiprngfu.v φQRing
rngqiprngfu.e φE1Q
rngqiprngfu.m -˙=-R
rngqiprngfu.a +˙=+R
rngqiprngfu.n U=E-˙1˙·˙E+˙1˙
rngqipring1.p P=Q×𝑠J
Assertion rngqipring1 φ1P=E˙1˙

Proof

Step Hyp Ref Expression
1 rngqiprngfu.r φRRng
2 rngqiprngfu.i φI2IdealR
3 rngqiprngfu.j J=R𝑠I
4 rngqiprngfu.u φJRing
5 rngqiprngfu.b B=BaseR
6 rngqiprngfu.t ·˙=R
7 rngqiprngfu.1 1˙=1J
8 rngqiprngfu.g ˙=R~QGI
9 rngqiprngfu.q Q=R/𝑠˙
10 rngqiprngfu.v φQRing
11 rngqiprngfu.e φE1Q
12 rngqiprngfu.m -˙=-R
13 rngqiprngfu.a +˙=+R
14 rngqiprngfu.n U=E-˙1˙·˙E+˙1˙
15 rngqipring1.p P=Q×𝑠J
16 15 10 4 xpsring1d φ1P=1Q1J
17 11 adantr φxBE1Q
18 eleq2 1Q=x˙E1QEx˙
19 18 adantl φxB1Q=x˙E1QEx˙
20 elecg E1QxBEx˙x˙E
21 11 20 sylan φxBEx˙x˙E
22 ringrng JRingJRng
23 4 22 syl φJRng
24 3 23 eqeltrrid φR𝑠IRng
25 1 2 24 rng2idlnsg φINrmSGrpR
26 nsgsubg INrmSGrpRISubGrpR
27 25 26 syl φISubGrpR
28 27 adantr φxBISubGrpR
29 5 8 eqger ISubGrpR˙ErB
30 28 29 syl φxB˙ErB
31 simpr φxBxB
32 30 31 erth φxBx˙Ex˙=E˙
33 32 biimpa φxBx˙Ex˙=E˙
34 33 eqcomd φxBx˙EE˙=x˙
35 34 ex φxBx˙EE˙=x˙
36 21 35 sylbid φxBEx˙E˙=x˙
37 36 adantr φxB1Q=x˙Ex˙E˙=x˙
38 19 37 sylbid φxB1Q=x˙E1QE˙=x˙
39 38 ex φxB1Q=x˙E1QE˙=x˙
40 17 39 mpid φxB1Q=x˙E˙=x˙
41 40 imp φxB1Q=x˙E˙=x˙
42 simpr φxB1Q=x˙1Q=x˙
43 41 42 eqtr4d φxB1Q=x˙E˙=1Q
44 1 2 3 4 5 6 7 8 9 10 rngqiprngfulem1 φxB1Q=x˙
45 43 44 r19.29a φE˙=1Q
46 45 eqcomd φ1Q=E˙
47 7 eqcomi 1J=1˙
48 47 a1i φ1J=1˙
49 46 48 opeq12d φ1Q1J=E˙1˙
50 16 49 eqtrd φ1P=E˙1˙