Description: The ring unity of the product of the quotient with a two-sided ideal and the two-sided ideal, which both are rings. (Contributed by AV, 16-Mar-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rngqiprngfu.r | |
|
rngqiprngfu.i | |
||
rngqiprngfu.j | |
||
rngqiprngfu.u | |
||
rngqiprngfu.b | |
||
rngqiprngfu.t | |
||
rngqiprngfu.1 | |
||
rngqiprngfu.g | |
||
rngqiprngfu.q | |
||
rngqiprngfu.v | |
||
rngqiprngfu.e | |
||
rngqiprngfu.m | |
||
rngqiprngfu.a | |
||
rngqiprngfu.n | |
||
rngqipring1.p | |
||
Assertion | rngqipring1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngqiprngfu.r | |
|
2 | rngqiprngfu.i | |
|
3 | rngqiprngfu.j | |
|
4 | rngqiprngfu.u | |
|
5 | rngqiprngfu.b | |
|
6 | rngqiprngfu.t | |
|
7 | rngqiprngfu.1 | |
|
8 | rngqiprngfu.g | |
|
9 | rngqiprngfu.q | |
|
10 | rngqiprngfu.v | |
|
11 | rngqiprngfu.e | |
|
12 | rngqiprngfu.m | |
|
13 | rngqiprngfu.a | |
|
14 | rngqiprngfu.n | |
|
15 | rngqipring1.p | |
|
16 | 15 10 4 | xpsring1d | |
17 | 11 | adantr | |
18 | eleq2 | |
|
19 | 18 | adantl | |
20 | elecg | |
|
21 | 11 20 | sylan | |
22 | ringrng | |
|
23 | 4 22 | syl | |
24 | 3 23 | eqeltrrid | |
25 | 1 2 24 | rng2idlnsg | |
26 | nsgsubg | |
|
27 | 25 26 | syl | |
28 | 27 | adantr | |
29 | 5 8 | eqger | |
30 | 28 29 | syl | |
31 | simpr | |
|
32 | 30 31 | erth | |
33 | 32 | biimpa | |
34 | 33 | eqcomd | |
35 | 34 | ex | |
36 | 21 35 | sylbid | |
37 | 36 | adantr | |
38 | 19 37 | sylbid | |
39 | 38 | ex | |
40 | 17 39 | mpid | |
41 | 40 | imp | |
42 | simpr | |
|
43 | 41 42 | eqtr4d | |
44 | 1 2 3 4 5 6 7 8 9 10 | rngqiprngfulem1 | |
45 | 43 44 | r19.29a | |
46 | 45 | eqcomd | |
47 | 7 | eqcomi | |
48 | 47 | a1i | |
49 | 46 48 | opeq12d | |
50 | 16 49 | eqtrd | |