Description: Within the N -th roots of unity, the conjugate of the K -th root is the N - K -th root. (Contributed by Mario Carneiro, 23-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | root1cj | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neg1cn | |
|
2 | 2re | |
|
3 | simpl | |
|
4 | nndivre | |
|
5 | 2 3 4 | sylancr | |
6 | 5 | recnd | |
7 | cxpcl | |
|
8 | 1 6 7 | sylancr | |
9 | 1 | a1i | |
10 | neg1ne0 | |
|
11 | 10 | a1i | |
12 | 9 11 6 | cxpne0d | |
13 | simpr | |
|
14 | nnz | |
|
15 | 14 | adantr | |
16 | 8 12 13 15 | expsubd | |
17 | root1id | |
|
18 | 17 | adantr | |
19 | 18 | oveq1d | |
20 | 8 12 13 | expclzd | |
21 | 8 12 13 | expne0d | |
22 | recval | |
|
23 | 20 21 22 | syl2anc | |
24 | absexpz | |
|
25 | 8 12 13 24 | syl3anc | |
26 | abscxp2 | |
|
27 | 1 5 26 | sylancr | |
28 | ax-1cn | |
|
29 | 28 | absnegi | |
30 | abs1 | |
|
31 | 29 30 | eqtri | |
32 | 31 | oveq1i | |
33 | 27 32 | eqtrdi | |
34 | 6 | 1cxpd | |
35 | 33 34 | eqtrd | |
36 | 35 | oveq1d | |
37 | 1exp | |
|
38 | 37 | adantl | |
39 | 25 36 38 | 3eqtrd | |
40 | 39 | oveq1d | |
41 | sq1 | |
|
42 | 40 41 | eqtrdi | |
43 | 42 | oveq2d | |
44 | 20 | cjcld | |
45 | 44 | div1d | |
46 | 23 43 45 | 3eqtrd | |
47 | 16 19 46 | 3eqtrrd | |