Metamath Proof Explorer


Theorem root1cj

Description: Within the N -th roots of unity, the conjugate of the K -th root is the N - K -th root. (Contributed by Mario Carneiro, 23-Apr-2015)

Ref Expression
Assertion root1cj NK-12NK=-12NNK

Proof

Step Hyp Ref Expression
1 neg1cn 1
2 2re 2
3 simpl NKN
4 nndivre 2N2N
5 2 3 4 sylancr NK2N
6 5 recnd NK2N
7 cxpcl 12N12N
8 1 6 7 sylancr NK12N
9 1 a1i NK1
10 neg1ne0 10
11 10 a1i NK10
12 9 11 6 cxpne0d NK12N0
13 simpr NKK
14 nnz NN
15 14 adantr NKN
16 8 12 13 15 expsubd NK-12NNK=-12NN-12NK
17 root1id N-12NN=1
18 17 adantr NK-12NN=1
19 18 oveq1d NK-12NN-12NK=1-12NK
20 8 12 13 expclzd NK-12NK
21 8 12 13 expne0d NK-12NK0
22 recval -12NK-12NK01-12NK=-12NK-12NK2
23 20 21 22 syl2anc NK1-12NK=-12NK-12NK2
24 absexpz 12N12N0K-12NK=12NK
25 8 12 13 24 syl3anc NK-12NK=12NK
26 abscxp2 12N12N=12N
27 1 5 26 sylancr NK12N=12N
28 ax-1cn 1
29 28 absnegi 1=1
30 abs1 1=1
31 29 30 eqtri 1=1
32 31 oveq1i 12N=12N
33 27 32 eqtrdi NK12N=12N
34 6 1cxpd NK12N=1
35 33 34 eqtrd NK12N=1
36 35 oveq1d NK12NK=1K
37 1exp K1K=1
38 37 adantl NK1K=1
39 25 36 38 3eqtrd NK-12NK=1
40 39 oveq1d NK-12NK2=12
41 sq1 12=1
42 40 41 eqtrdi NK-12NK2=1
43 42 oveq2d NK-12NK-12NK2=-12NK1
44 20 cjcld NK-12NK
45 44 div1d NK-12NK1=-12NK
46 23 43 45 3eqtrd NK1-12NK=-12NK
47 16 19 46 3eqtrrd NK-12NK=-12NNK